Answer:
3
Step-by-step explanation:
Is the answer
Pls mark as branlist
You could subtract 5/4 from each side of the equation.
Then it would say
x = -2/4 .
That's a perfectly true solution, but not a very attractive one.
To pretty it up, you could simplify the fraction if you felt like it,
and you would have
x = -1/2 .
Answer:
x= -5
Step-by-step explanation:
8+(-5)=3
Answer:
![2a^3b^2\sqrt[3]{3a}](https://tex.z-dn.net/?f=2a%5E3b%5E2%5Csqrt%5B3%5D%7B3a%7D)
Step-by-step explanation:
Use the following rules for exponents:
![a^m*a^n=a^{m+n}\\\\\sqrt[3]{x^3}=x](https://tex.z-dn.net/?f=a%5Em%2Aa%5En%3Da%5E%7Bm%2Bn%7D%5C%5C%5C%5C%5Csqrt%5B3%5D%7Bx%5E3%7D%3Dx)
Simplify 24. Find two factors of 24, one of which should be a perfect cube:

Insert:
![\sqrt[3]{2^3*3a^{10}b^6}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2%5E3%2A3a%5E%7B10%7Db%5E6%7D)
Now split the exponents. Split 10 into as many 3's as possible:

Insert as exponents:
![\sqrt[3]{2^3*3*a^3*a^3*a^3*a^1*b^6}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2%5E3%2A3%2Aa%5E3%2Aa%5E3%2Aa%5E3%2Aa%5E1%2Ab%5E6%7D)
Split 6 into as many 3's as possible:

Insert as exponents:
![\sqrt[3]{2^3*3*a^3*a^3*a^3*a^1*b^3*b^3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2%5E3%2A3%2Aa%5E3%2Aa%5E3%2Aa%5E3%2Aa%5E1%2Ab%5E3%2Ab%5E3%7D)
Now simplify. Any terms with an exponent of 3 will be moved out of the radical (rule #2):
![2\sqrt[3]{3*a^3*a^3*a^3*a^1*b^3*b^3}\\\\\\2*a*a*a\sqrt[3]{3*a^1*b^3*b^3}\\\\\\2*a*a*a*b*b\sqrt[3]{3*a^1}](https://tex.z-dn.net/?f=2%5Csqrt%5B3%5D%7B3%2Aa%5E3%2Aa%5E3%2Aa%5E3%2Aa%5E1%2Ab%5E3%2Ab%5E3%7D%5C%5C%5C%5C%5C%5C2%2Aa%2Aa%2Aa%5Csqrt%5B3%5D%7B3%2Aa%5E1%2Ab%5E3%2Ab%5E3%7D%5C%5C%5C%5C%5C%5C2%2Aa%2Aa%2Aa%2Ab%2Ab%5Csqrt%5B3%5D%7B3%2Aa%5E1%7D)
Simplify:
![2a^3b^2\sqrt[3]{3a}](https://tex.z-dn.net/?f=2a%5E3b%5E2%5Csqrt%5B3%5D%7B3a%7D)
:Done
Gaming a video-game designer is using the expression 6n3 in a program to determine points earned, where n is the game level.
Given expression is
. the given expression is for the nth level.
To simplify the expression for the
level, we plug in
in the place of 'n' in the given expression
(multiply the exponents)