1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kicyunya [14]
3 years ago
7

Bsinx%5E%7B2%7D%20%7D" id="TexFormula1" title="\lim_{x\to \ 0} \frac{\sqrt{cos2x}-\sqrt[3]{cos3x} }{sinx^{2} }" alt="\lim_{x\to \ 0} \frac{\sqrt{cos2x}-\sqrt[3]{cos3x} }{sinx^{2} }" align="absmiddle" class="latex-formula">
Mathematics
1 answer:
salantis [7]3 years ago
6 0

Answer:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{1}{2}

General Formulas and Concepts:

<u>Calculus</u>

Limits

Limit Rule [Variable Direct Substitution]:                                                                     \displaystyle \lim_{x \to c} x = c

L'Hopital's Rule

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

We are given the limit:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)}

When we directly plug in <em>x</em> = 0, we see that we would have an indeterminate form:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{0}{0}

This tells us we need to use L'Hoptial's Rule. Let's differentiate the limit:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \displaystyle  \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)}

Plugging in <em>x</em> = 0 again, we would get:

\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \frac{0}{0}

Since we reached another indeterminate form, let's apply L'Hoptial's Rule again:

\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)}

Substitute in <em>x</em> = 0 once more:

\displaystyle \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)} = \frac{1}{2}

And we have our final answer.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

You might be interested in
Helppp this is chemistry not math though
Scorpion4ik [409]

Answer:

It is balance she need to use. Answer is B.

7 0
3 years ago
Read 2 more answers
Please help ASAP<br><br> What is the value of x?<br><br><br><br> Enter your answer in the box.
guapka [62]

Just took the test and got the the correct answer *\(♡°▽°♡)/*

Look at the image down below!!

4 0
3 years ago
Read 2 more answers
FREEEEEEE POINTSSSS !!!!!!!!!
AnnyKZ [126]
HOLY THATS ALOT OF POINTS OMGUdjdjdbxbfkdnn
6 0
3 years ago
Read 2 more answers
The phases of the moon are periodic and repetitive. A new moon occurs when no moon is visible to an observer on
vfiekz [6]

Answer:

It's A

Step-by-step explanation:

Got it right on the practice :)

3 0
2 years ago
Replace the ? in each of these statements with the symbol &gt;, &lt;, or =.
saveliy_v [14]

<em>3</em><em>9</em><em>></em><em>3</em><em>8</em>

<em>1</em><em>6</em><em>=</em><em>1</em><em>6</em>

<em>1</em><em>1</em><em><</em><em>3</em><em>1</em><em>5</em>

<em>5</em><em>></em><em>4</em>

<em>Hope </em><em>this </em><em>helps </em><em>you </em><em>mate </em>

<em>~♥~</em><em>♪☆\(^0^\) ♪(/^-^)/☆</em><em>♪☆\(^0^\) ♪(/^-^)/☆</em><em>♪\(*^▽^*)/\(*^▽^*)/</em><em>♪☆\(^0^\) ♪(/^-^)/☆</em><em>♪ ♬ ヾ(´︶`♡)ノ ♬ ♪</em>

5 0
3 years ago
Read 2 more answers
Other questions:
  • Help with one question please.
    10·1 answer
  • 2,5,8,11,14 write down in terms of n , an expression for the nth term for this sequence
    10·1 answer
  • ∆ABC is reflected about the line y = -x to give ∆A'B'C' with vertices
    7·1 answer
  • Which is smaller? 7/12 1/2 2/3 4/10 1/6
    11·2 answers
  • MATH!!! I HAVE NO IDEA HOW TO DO THIS PLEASE SHOW ME THE WORK I WANNA KNOW HOW TO DO THIS FOR THE NEXT QUESTION!!!!​
    5·1 answer
  • What is the value of t? 3/5t - 4 - 7/10t = -2<br><br><br> A. -20<br> B. -5<br> C. 5<br> D. 20
    15·1 answer
  • Six is less than or equal to the sum of a number n and 15
    15·1 answer
  • In June 2005, a CBS News/NY Times poll asked a random sample of 1,111 U.S. adults the following question: "What do you think is
    10·1 answer
  • A gallon of water weighs 8.34 pounds. The Rhoads family has a round, 12-foot diameter, above-ground pool. How much weight is add
    14·1 answer
  • PRESLEY
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!