Answer:
Do you still need this one?
Step-by-step explanation:

Answer:
y = 3
Step-by-step explanation:
2x-3y = -5 --------- (1)
y = 2+x ------- (2)
substitute (2) into (1)
2x-3y = -5
2x-3( 2+x ) = -5
2x-6-x = -5
2x-x = -5+6
x = 1
substitute x = 1 into (2)
y = 2+x
y = 2+1
y = 3
Answer:
Solution = (-8,-28)
Step-by-step explanation:
Answer:
The dimensions that minimize the cost of materials for the cylinders have radii of about 3.628 cm and heights of about 7.256 cm.
Step-by-step explanation:
A cylindrical can holds 300 cubic centimeters, and we want to find the dimensions that minimize the cost for materials: that is, the dimensions that minimize the surface area.
Recall that the volume for a cylinder is given by:

Substitute:

Solve for <em>h: </em>

Recall that the surface area of a cylinder is given by:

We want to minimize this equation. To do so, we can find its critical points, since extrema (minima and maxima) occur at critical points.
First, substitute for <em>h</em>.

Find its derivative:

Solve for its zero(s):
![\displaystyle \begin{aligned} (0) &= 4\pi r - \frac{600}{r^2} \\ \\ 4\pi r - \frac{600}{r^2} &= 0 \\ \\ 4\pi r^3 - 600 &= 0 \\ \\ \pi r^3 &= 150 \\ \\ r &= \sqrt[3]{\frac{150}{\pi}} \approx 3.628\text{ cm}\end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%20%280%29%20%26%3D%204%5Cpi%20r%20%20-%20%5Cfrac%7B600%7D%7Br%5E2%7D%20%5C%5C%20%5C%5C%204%5Cpi%20r%20-%20%5Cfrac%7B600%7D%7Br%5E2%7D%20%26%3D%200%20%5C%5C%20%5C%5C%204%5Cpi%20r%5E3%20-%20600%20%26%3D%200%20%5C%5C%20%5C%5C%20%5Cpi%20r%5E3%20%26%3D%20150%20%5C%5C%20%5C%5C%20r%20%26%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7B150%7D%7B%5Cpi%7D%7D%20%5Capprox%203.628%5Ctext%7B%20cm%7D%5Cend%7Baligned%7D)
Hence, the radius that minimizes the surface area will be about 3.628 centimeters.
Then the height will be:
![\displaystyle \begin{aligned} h&= \frac{300}{\pi\left( \sqrt[3]{\dfrac{150}{\pi}}\right)^2} \\ \\ &= \frac{60}{\pi \sqrt[3]{\dfrac{180}{\pi^2}}}\approx 7.25 6\text{ cm} \end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%20%5Cbegin%7Baligned%7D%20h%26%3D%20%5Cfrac%7B300%7D%7B%5Cpi%5Cleft%28%20%5Csqrt%5B3%5D%7B%5Cdfrac%7B150%7D%7B%5Cpi%7D%7D%5Cright%29%5E2%7D%20%20%5C%5C%20%5C%5C%20%26%3D%20%5Cfrac%7B60%7D%7B%5Cpi%20%5Csqrt%5B3%5D%7B%5Cdfrac%7B180%7D%7B%5Cpi%5E2%7D%7D%7D%5Capprox%207.25%206%5Ctext%7B%20cm%7D%20%20%20%5Cend%7Baligned%7D)
In conclusion, the dimensions that minimize the cost of materials for the cylinders have radii of about 3.628 cm and heights of about 7.256 cm.
Percent = part/whole
It wants you to find the % of change so it's 3.25 / 3.75
And that comes out to be 0.86 (with the 6 repeating)
So you move the decimal over 2 places to find the percent.
And then it's 1 - Ans
The answer is 13.33%