I can’t see the graph so I’m not sure
Answer:
ok, what grade level? and you need to actually type the questions into here
The two expressions are not equivalent, you figure this out by solving both problems individually and seeing if the answer is the same as the other
now, this polynomial has roots of 3-i and 4i, namely 3 - i and 0 + 4i.
let's bear in mind that a complex root never comes all by her lonesome, her sibling is always with her, the conjugate, so if 3 - i is there, 3 + i is also coming along, likewise if 0 + 4i is there, her sibling 0 - 4i is also there.
![\bf \begin{cases} x=3-i\implies &x-3+i=0\\ x=3+i\implies &x-3-i=0\\ x=4i\implies &x-4i=0\\ x=-4i\implies &x+4i=0 \end{cases}\\\\[-0.35em] ~\dotfill\\\\ (x-3+i)(x-3-i)(x-4i)(x+4i)=\stackrel{y}{0} \\[2em] \underset{\textit{difference of squares}}{[(x-3)+i][(x-3)-i]}\underset{\textit{difference of squares}}{[x-4i][x+4i]}=0](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%20x%3D3-i%5Cimplies%20%26x-3%2Bi%3D0%5C%5C%20x%3D3%2Bi%5Cimplies%20%26x-3-i%3D0%5C%5C%20x%3D4i%5Cimplies%20%26x-4i%3D0%5C%5C%20x%3D-4i%5Cimplies%20%26x%2B4i%3D0%20%5Cend%7Bcases%7D%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%28x-3%2Bi%29%28x-3-i%29%28x-4i%29%28x%2B4i%29%3D%5Cstackrel%7By%7D%7B0%7D%20%5C%5C%5B2em%5D%20%5Cunderset%7B%5Ctextit%7Bdifference%20of%20squares%7D%7D%7B%5B%28x-3%29%2Bi%5D%5B%28x-3%29-i%5D%7D%5Cunderset%7B%5Ctextit%7Bdifference%20of%20squares%7D%7D%7B%5Bx-4i%5D%5Bx%2B4i%5D%7D%3D0)
![\bf [(x-3)^2-i^2][x^2-(4i)^2]=y\implies [(x-3)^2-(-1)][x^2-(4^2i^2)]=0 \\[2em] [(x-3)^2-(-1)][x^2-(16(-1))]=0\implies [(x-3)^2+1][x^2+16]=0 \\[2em] [(x^2-6x+9)+1][x^2+16]=y\implies (x^2-6x+10)(x^2+16)=0 \\\\\\ x^4-6x^3+10x^2+16x^2-96x+160=0 \\\\\\ x^4-6x^3+26x^2-96x+160=0 \\\\\\ \stackrel{\textit{multiplying both sides by 4}}{4(x^4-6x^3+26x^2-96x+160)=4(0)} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill 4x^4-24x^3+104x^2-384x+640=y~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5B%28x-3%29%5E2-i%5E2%5D%5Bx%5E2-%284i%29%5E2%5D%3Dy%5Cimplies%20%5B%28x-3%29%5E2-%28-1%29%5D%5Bx%5E2-%284%5E2i%5E2%29%5D%3D0%20%5C%5C%5B2em%5D%20%5B%28x-3%29%5E2-%28-1%29%5D%5Bx%5E2-%2816%28-1%29%29%5D%3D0%5Cimplies%20%5B%28x-3%29%5E2%2B1%5D%5Bx%5E2%2B16%5D%3D0%20%5C%5C%5B2em%5D%20%5B%28x%5E2-6x%2B9%29%2B1%5D%5Bx%5E2%2B16%5D%3Dy%5Cimplies%20%28x%5E2-6x%2B10%29%28x%5E2%2B16%29%3D0%20%5C%5C%5C%5C%5C%5C%20x%5E4-6x%5E3%2B10x%5E2%2B16x%5E2-96x%2B160%3D0%20%5C%5C%5C%5C%5C%5C%20x%5E4-6x%5E3%2B26x%5E2-96x%2B160%3D0%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%204%7D%7D%7B4%28x%5E4-6x%5E3%2B26x%5E2-96x%2B160%29%3D4%280%29%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%204x%5E4-24x%5E3%2B104x%5E2-384x%2B640%3Dy~%5Chfill)