The parent function is:
y = x ^ 2
Applying the following function transformation we have:
Horizontal translations:
Suppose that h> 0
To graph y = f (x-h), move the graph of h units to the right.
We have then:
g (x) = (x-2) ^ 2
Then, we have the following function transformation:
Vertical translations
Suppose that k> 0
To graph y = f (x) + k, move the graph of k units up.
We have then that the original function is:
g (x) = (x-2) ^ 2
Applying the transformation we have
f (x) = g (x) +3
f (x) = (x-2) ^ 2 + 3
Answer:
the function f(x) moves horizontally 2 units rigth.
The function f (x) is shifted vertically 3 units up.
Answer:
the answer is <u><em>2</em></u> on edge
Step-by-step explanation:
Answer:
x=2.4650
Step-by-step explanation:
I assume that you mean 
so let s use the ln() function

so x = ln(15)/ln(3)
x = 2.4650
125. To find the answer to these questions, divide the number (50) by the percent in decimal form (40% = 0.4) 50 / 0.4 = 125. To make sure, 125 x 0.4 = 50.
Answer:
1) 25
2) 2
3) f(g(1)) = 42
Step-by-step explanation:
1) Given that f(x) = 4x^2 + 9
If x = -2
f(-2) = 4(-2)^2 + 9
f(-2) = 4(4) + 9
f(-2) = 16 + 9
f(-2) = 25
2) Given that f(x) = 4x - 6
y = 4x - 6
Replace y with x
x = 4y - 6
MAke y the subject of the forfmula
4y = x+ 6
y = (x+6)/4
SInce x = 2
f^(-1)(2) = (2+6)/4
f^(-1)(2) = 8/4 = 2
3) If f(x) = 6x and g(x) = x+6
f(g(x)) = f(x+6)
f(x+6) = 6(x+6)
Since x = 1
f(g(1)) = 6(1+6)
f(g(1)) = 6(7)
f(g(1)) = 42