Answer:
0.0918
Step-by-step explanation:
We know that the average amount of money spent on entertainment is normally distributed with mean=μ=95.25 and standard deviation=σ=27.32.
The mean and standard deviation of average spending of sample size 25 are
μxbar=μ=95.25
σxbar=σ/√n=27.32/√25=27.32/5=5.464.
So, the average spending of a sample of 25 randomly-selected professors is normally distributed with mean=μ=95.25 and standard deviation=σ=27.32.
The z-score associated with average spending $102.5
Z=[Xbar-μxbar]/σxbar
Z=[102.5-95.25]/5.464
Z=7.25/5.464
Z=1.3269=1.33
We have to find P(Xbar>102.5).
P(Xbar>102.5)=P(Z>1.33)
P(Xbar>102.5)=P(0<Z<∞)-P(0<Z<1.33)
P(Xbar>102.5)=0.5-0.4082
P(Xbar>102.5)=0.0918.
Thus, the probability that the average spending of a sample of 25 randomly-selected professors will exceed $102.5 is 0.0918.
You just multiply the top and bottom numbers like it was two normal multiplication problems. Ex. 3/4x1/4=3/16 (3x1,4x4) But its different because you have to put them together to make a fraction (3/16).
Step-by-step explanation:
•a reflection and a dilation
Answer:
Closer to 0 than 0.5, or under zero
Step-by-step explanation:
On a vertical number line, anything above zero is positive, and anything under zero is negative. If 0.5 is the greater number, then it has to be closer to zero, or under it.