1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ainat [17]
3 years ago
12

Please do the pdf It is due today (march 9 2021)

Mathematics
1 answer:
posledela3 years ago
5 0
Your picture is blank.
You might be interested in
Given the equation 8x=4Y +16 ,generate a plan to rewrite it in slope-intercept form WHICH VARIABLE DO YOU SOLVE FOR?
andriy [413]

Answer:

you switch 8x and 4y by subtracting 8x to 4y + 16 and substracting 4y to 8x.

This gives you the equation -4y = -8x+16

Then you divide each side by -4

To give you your slope-intercept form which is y = 2x-4.

4 0
3 years ago
Explicit equation for the nth term of the geometric sequence 3584,896,224,
Vesnalui [34]

<em><u>The explicit equation for the nth term of the geometric sequence 3584, 896, 224 is:</u></em>

a_n=3584(0.25)^{n-1}\\\\\text{Where } n\geq 1 \text{ ,n = 1, 2, 3, 4, .........}

<em><u>Solution:</u></em>

Given that we have to find the explicit equation for nth term of geometric sequence

<em><u>Given sequence is:</u></em>

3584, 896, 224

A geometric sequence has a common ratio

Let us find the common ratio. Divide each term by the previous term.

r=\frac{896}{3584} = 0.25\\\\r = \frac{224}{896} = 0.25

Thus the common ratio is 0.25

<em><u>The formula for nth term of geometric sequence is given as:</u></em>

a_n=ar^{n-1}

Where,

a_n is the nth term of sequence

a is the first term of sequence

r is the common ratio

Here in given sequence 3584, 896, 224

first term = a = 3584

common ratio = r = 0.25

Therefore,

a_n=3584(0.25)^{n-1}

\text{Where } n\geq 1 \text{ ,n = 1, 2, 3, 4, .........}

"n" is a natural positive number greater than or equal to 1

Thus the explicit equation to find nth term is found

7 0
4 years ago
Find the volume of a right circular cone that has a height of 2.3 in and a base with a diameter of 3.6 in.
muminat

Answer:

V=7.8

Step-by-step explanation:

V=πr^2 h/3

V=3.14*1.8^2 2.3/3

V=7.8

7 0
4 years ago
Quick somebody solve this please<br><br> 3(38/23 + 2)-7(2 × 38/23 - 4)=4(3 × 38/23-1)
scoundrel [369]

Answer:

equation is always true (im sorry if I got this wrong)

Step-by-step explanation:

a brainly would be epic :0

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

          3*(38/23+2)-7*(2*38/23-4)-(4*(3*38/23-1))=0

Step by step solution :

Step  1  :

           38

Simplify   ——

           23

Equation at the end of step  1  :

      38            38              38

 ((3•(——+2))-(7•((2•——)-4)))-(4•((3•——)-1))  = 0

      23            23              23

Step  2  :

Rewriting the whole as an Equivalent Fraction :

2.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  23  as the denominator :

        1     1 • 23

   1 =  —  =  ——————

        1       23  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

2.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

114 - (23)     91

——————————  =  ——

    23         23

Equation at the end of step  2  :

      38            38          91

 ((3•(——+2))-(7•((2•——)-4)))-(4•——)  = 0

      23            23          23

Step  3  :

           38

Simplify   ——

           23

Equation at the end of step  3  :

      38            38       364

 ((3•(——+2))-(7•((2•——)-4)))-———  = 0

      23            23       23

Step  4  :

Rewriting the whole as an Equivalent Fraction :

4.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  23  as the denominator :

        4     4 • 23

   4 =  —  =  ——————

        1       23  

Adding fractions that have a common denominator :

4.2       Adding up the two equivalent fractions

76 - (4 • 23)     -16

—————————————  =  ———

     23           23

Equation at the end of step  4  :

      38        -16   364

 ((3•(——+2))-(7•———))-———  = 0

      23        23    23

Step  5  :

           38

Simplify   ——

           23

Equation at the end of step  5  :

        38           -112     364

 ((3 • (—— +  2)) -  ————) -  ———  = 0

        23            23      23

Step  6  :

Rewriting the whole as an Equivalent Fraction :

6.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  23  as the denominator :

        2     2 • 23

   2 =  —  =  ——————

        1       23  

Adding fractions that have a common denominator :

6.2       Adding up the two equivalent fractions

38 + 2 • 23     84

———————————  =  ——

    23          23

Equation at the end of step  6  :

       84     -112     364

 ((3 • ——) -  ————) -  ———  = 0

       23      23      23

Step  7  :

Adding fractions which have a common denominator :

7.1       Adding fractions which have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

252 - (-112)     364

————————————  =  ———

     23          23

Equation at the end of step  7  :

 364    364

 ——— -  ———  = 0

 23     23

Step  8  :

Adding fractions which have a common denominator :

8.1       Adding fractions which have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

364 - (364)      0

———————————  =  ——

    23          23

Equation at the end of step  8  :

 0  = 0

Step  9  :

Equations which are always true :

9.1    Solve   0  = 0This equation is a tautology (Something which is always true)

Equation is alway true

6 0
3 years ago
A 12-ounce box of cereal is priced at $3.60 while a20-ounces box of the same brand of cereal is priced at $5.00. What is the dif
trapecia [35]

Answer:   .05


Step-by-step explanation: 3.60 divided by 12: 0.3

5.00 divided by 20: 0.25


0.3-0.25=0.05


3 0
3 years ago
Other questions:
  • -15 + 12x = 5x + 7 -3x
    14·1 answer
  • Evaluate the expression when a = 3 and b = 5.
    11·2 answers
  • trapezoid wxyz is located at w (0,5) x (3,8) y (7,8) and z (10,5). after being translated 8 units to the left, what are the new
    6·1 answer
  • Point Y is the circumcenter of triangle DEF
    15·2 answers
  • A realtor sold 3 homes during her first month at an average house price of $120,000. During her second month, she sold 2 homes a
    11·1 answer
  • A sailboat sails for 1/6 of an hour and travels 2 1/2 miles. What is it's rate in miles per hour? ​
    10·1 answer
  • What does A= 3, B=4 C,=6<br><br><br><br><br><br>​
    8·1 answer
  • Kendall scored 3 times as many points as Abdul scored in a basketball game. Otis scored 5 more points than Abdul
    11·1 answer
  • Find the equation in slope-intercept form for the line with a slope of 5/4 and passes through the point (8, 2)
    7·1 answer
  • Find the PERIMETER of the following shape.
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!