1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AysviL [449]
3 years ago
10

3/5 x 5/7 = ????????????????????????

Mathematics
1 answer:
IceJOKER [234]3 years ago
6 0

Answer:

3/7

Step-by-step explanation:

already learn that

You might be interested in
The graph highlights two other points on the trend line. Use them to find another equation for the trend line shown for this sca
frutty [35]

Option A:

The equation for the trend line is y = 82x + 998.

Solution:

The points on the line are (2, 1162) and (11, 1900).

Here, x_1=2, y_1=1162, x_2 = 11, y_2=1900

Slope of the line:

$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}

$m=\frac{1900-1162}{11-2}

$m=\frac{738}{9}

m = 82

Point-slope formula:

y-y_{1}=m\left(x-x_{1}\right)

y-1162=82\left(x-2\right)

y-1162=82x-164

Add 1162 on both sides of the equation.

y=82x+998

The equation for the trend line is y = 82x + 998.

Hence Option A is the correct answer.

4 0
3 years ago
A family of two adults and three children went to a water park. Admission to the water park costs $18 per person. Nora used the
horsena [70]

Answer: distributive property

Step-by-step explanation:

5(18)=2(18)+3(18)

18(2+3) = 2* 18+ 3*18

18*5 =  2* 18+ 3*18

5 0
3 years ago
Read 2 more answers
Use Lagrange multipliers to find the maximum and minimum values of f(x,y)=x+4y subject to the constraint x2+y2=9, if such values
Vesnalui [34]

The Lagrangian is

L(x,y,\lambda)=x+4y+\lambda(x^2+y^2-9)

with critical points where the partial derivatives vanish.

L_x=1+2\lambda x=0\implies x=-\dfrac1{2\lambda}

L_y=4+2\lambda y=0\implies y=-\dfrac2\lambda

L_\lambda=x^2+y^2-9=0

Substitute x,y into the last equation and solve for \lambda:

\left(-\dfrac1{2\lambda}\right)^2+\left(-\dfrac2\lambda\right)^2=9\implies\lambda=\pm\dfrac{\sqrt{17}}6

Then we get two critical points,

(x,y)=\left(-\dfrac3{\sqrt{17}},-\dfrac{12}{\sqrt{17}}\right)\text{ and }(x,y)=\left(\dfrac3{\sqrt{17}},\dfrac{12}{\sqrt{17}}\right)

We get an absolute maximum of 3\sqrt{17}\approx12.369 at the second point, and an absolute minimum of -3\sqrt{17}\approx-12.369 at the first point.

4 0
3 years ago
Do #6 for me pls and thank you!​
emmainna [20.7K]

Answer: function a

Hope this helped!

4 0
3 years ago
How do you write 53,806 in expanded form using exponents
densk [106]
(5x10^4)+(3x10^3)+(8x10^2)+(0x10^1)+6x10^0)
6 0
3 years ago
Other questions:
  • Whats the last common multple of 2,5,6,9 and 9 is
    12·1 answer
  • What is the value of m?
    8·2 answers
  • Workers at Sunny Acres Orchard picked 544 apples. They picked 328 honey crisp apples and the rest were Granny Smith apples. The
    14·1 answer
  • In chapter 2, Ralph tried to gain momentum while on the motorcycle. Ralph crossed the 72 inch tabletop in 35 seconds. Find the r
    14·1 answer
  • Mary Kate borrowed $8,000 at a 7% simple interest rate for 3 years. At the end of the three years, how much does she owe in tota
    10·1 answer
  • Aquarium 1 contains 4.6 gallons of water. Lola will begin filling it at a rate of 1.2 gallons per minute. Aquarium 2 contains 54
    13·1 answer
  • Arthur competed in three different races. His time in the first race was 14.48 seconds, his time in the
    9·2 answers
  • Determine the domain of the following graph:
    15·1 answer
  • I don’t get this, i already tried but i can’t get it right
    11·1 answer
  • Find the Area in yards.<br><br> 12 mi<br> 6.9 mi
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!