The coordinates of the pre-image of point F' is (-2, 4)
<h3>How to determine the coordinates of the pre-image of point F'?</h3>
On the given graph, the location of point F' is given as:
F' = (4, -2)
The rule of reflection is given as
Reflection across line y = x
Mathematically, this is represented as
(x, y) = (y, x)
So, we have
F = (-2, 4)
Hence, the coordinates of the pre-image of point F' is (-2, 4)
Read more about transformation at:
brainly.com/question/4289712
#SPJ1
Answer:
for the first one I think it is -5/-2 second is 1/-4 third one is 2/1 this may not be correct
Step-by-step explanation:
9514 1404 393
Answer:
(a) cannot be determined
(b) 44 cm^2
(c) 87 m^2
(d) 180 m^2
(e) 132 m^2
Step-by-step explanation:
(a) missing a horizontal dimension
__
(b) The difference between the bounding rectangle and the lower-left cutout is ...
(8 cm)(7 cm) -(3 cm)(4 cm) = (56 -12) cm^2 = 44 cm^2
__
(c) The difference between the bounding rectangle and the center cutout is ...
(13 m)(7 m) -(4 m)(1 m) = (91 -4) m^2 = 87 m^2
__
(d) The difference between the bounding rectangle and the two cutouts is ...
(20 m)(25 m) -(16 m)(20 m) = (20 m)(25 -16) m = (20 m)(9 m) = 180 m^2
__
(e) The difference between the bounding rectangle and the two cutouts is ...
(14 m)(12 m) -(12 m)(3 m) = (12 m)(14 -3) m = (12 m)(11 m) = 132 m^2
Answer:
36
Step-by-step explanation:
Create an equation : 12 for how many pieces Stephanie took, 4 for how many children she has and 6 for how many pieces each child got:
12+ (6*4) = x
Solve:
12+24 = 36