Scalene,Acute i think it is haha
If <em>c</em> > 0, then <em>f(x</em> - <em>c)</em> is a shift of <em>f(x)</em> by <em>c</em> units to the right, and <em>f(x</em> + <em>c)</em> is a shift by <em>c</em> units to the left.
If <em>d</em> > 0, then <em>f(x)</em> - <em>d</em> is a shift by <em>d</em> units downward, and <em>f(x)</em> + <em>d</em> is a shift by <em>d</em> units upward.
Let <em>g(x)</em> = <em>x</em>. Then <em>f(x)</em> = <em>g(x</em> + <em>a)</em> - <em>b</em> = (<em>x</em> + <em>a</em>) - <em>b</em>. So to get <em>g(x)</em>, we translate <em>f(x)</em> to the left by <em>a</em> units, and down by <em>b</em> units.
Note that we can also interpret the translation as
• a shift upward of <em>a</em> - <em>b</em> units, since
(<em>x</em> + <em>a</em>) - <em>b</em> = <em>x</em> + (<em>a</em> - <em>b</em>)
• a shift <em>b</em> units to the right and <em>a</em> units upward, since
(<em>x</em> + <em>a</em>) - <em>b</em> = <em>x</em> + (<em>a</em> - <em>b</em>) = <em>x</em> + (- <em>b</em> + <em>a</em>) = (<em>x</em> - <em>b</em>) + <em>a</em>.
Answer: 0.75
Step-by-step explanation:
Given : Interval for uniform distribution : [0 minute, 5 minutes]
The probability density function will be :-

The probability that a given class period runs between 50.75 and 51.25 minutes is given by :-
![P(x>1.25)=\int^{5}_{1.25}f(x)\ dx\\\\=(0.2)[x]^{5}_{1.25}\\\\=(0.2)(5-1.25)=0.75](https://tex.z-dn.net/?f=P%28x%3E1.25%29%3D%5Cint%5E%7B5%7D_%7B1.25%7Df%28x%29%5C%20dx%5C%5C%5C%5C%3D%280.2%29%5Bx%5D%5E%7B5%7D_%7B1.25%7D%5C%5C%5C%5C%3D%280.2%29%285-1.25%29%3D0.75)
Hence, the probability that a randomly selected passenger has a waiting time greater than 1.25 minutes = 0.75
Answer:
0
Step-by-step explanation:
Answer:
273.75 days
Step-by-step explanation: