Interpreting the graph and the situation, it is found that the values of d that can be included in the solution set are 1 and 4.
----------------------
- According to Benford's law, the probability of a number starting with digit is d is:

- A number can start with 10 possible digits, ranging from 1 to 9, which are all integer digits.
- Thus, d can only assume integer digits.
- In the graph, the solution is d < 5.
- The integer options for values of d are 1 and 4.
- For the other options that are less than 5, they are not integers, so d cannot assume those values.
A similar problem is given at brainly.com/question/16764162
Explanation
Answer:
The carpenter can build the triangular frame by cutting the 12 foot piece by 2foot
Answer: Depends on what you come up with . /:
Step-by-step explanation:
3x-11+x+9= if u no the form for this... -x with 3x and -9 -11 should to a division problem so u divide from both sides leaving x = your sum.
Answer:
7
Step-by-step explanation:
collect like terms
14=-a+3a
2a=14
dividing both sides
a=7
The sequence shown is defined by a function that generates <em>even</em> numbers equal or greater than 10, defined by the function s = 10 + 2 · (n - 1).
<h3>How to define the function behind a sequence</h3>
Sequences are sets of elements characterized by at least a rule. In this case, the sequence shown is characterized by a function that generates even numbers equal or greater than 10. The function behind the sequence is shown below:
s = 10 + 2 · (n - 1) (1)
Where n is the <em>element</em> index.
The sequence shown is defined by a function that generates <em>even</em> numbers equal or greater than 10, defined by the function s = 10 + 2 · (n - 1).
To learn more on sequences: brainly.com/question/21961097
#SPJ1