<h3>
Answer:</h3>
6 hours
<h3>
Step-by-step explanation:</h3>
The two hoses together take 1/3 the time (4/12 = 1/3), so the two hoses together are equivalent to 3 of the first hose.
That is, the second hose is equivalent to 2 of the first hose. Two of the first hose could fill the vat in half the time one of them can, so 6 hours.
The second hose alone can fill the vat in 6 hours.
_____
The first hose's rate of doing work is ...
... (1 vat)/(12 hours) = (1/12) vat/hour
If h is the second hose's rate of doing work, then working together their rate is ...
... (1/12 vat/hour) + h = (1/4 vat/hour)
... h = (1/4 - 1/12) vat/hour = (3/12 -1/12) vat/hour = 2/12 vat/hour
... h = 1/6 vat/hour
so will take 6 hours to fill 1 vat.
Answer:
x = -3
y = -8
Step-by-step explanation:
2y = x - 13
3x = y - 1; let y = 3x + 1
substitute to solve for 'x':
2(3x + 1) = x - 13
6x + 2 = x - 13
5x + 2 = -13
5x = -15
x = -3
solve for 'y':
3(-3) = y - 1
-9 = y - 1
-8 = y
Answer:
Step-by-step explanation
Hello!
Be X: SAT scores of students attending college.
The population mean is μ= 1150 and the standard deviation σ= 150
The teacher takes a sample of 25 students of his class, the resulting sample mean is 1200.
If the professor wants to test if the average SAT score is, as reported, 1150, the statistic hypotheses are:
H₀: μ = 1150
H₁: μ ≠ 1150
α: 0.05
![Z= \frac{X[bar]-Mu}{\frac{Sigma}{\sqrt{n} } } ~~N(0;1)](https://tex.z-dn.net/?f=Z%3D%20%5Cfrac%7BX%5Bbar%5D-Mu%7D%7B%5Cfrac%7BSigma%7D%7B%5Csqrt%7Bn%7D%20%7D%20%7D%20~~N%280%3B1%29)

The p-value for this test is 0.0949
Since the p-value is greater than the level of significance, the decision is to reject the null hypothesis. Then using a significance level of 5%, there is enough evidence to reject the null hypothesis, then the average SAT score of the college students is not 1150.
I hope it helps!
The Inequality representing money she can still spend on her friend birthday gift is .
Jordan can still spend at most $30 on her friends birthday gift.
Step-by-step explanation:
Given:
Total money need to spend at most = $45
Money spent on Yoga ball = $15
We need to find how much money she can still spend on her friend birthday gift.
Solution:
Let the money she can still spend on her friend birthday gift be 'x'.
So we can say that;
Money spent on Yoga ball plus money she can still spend on her friend birthday gift should be less than or equal to Total money need to spend.
framing in equation form we get;
The Inequality representing money she can still spend on her friend birthday gift is .
On solving the the above Inequality we get;
we will subtract both side by 15 using subtraction property of Inequality.
Hence Jordan can still spend at most $30 on her friends birthday gift.

= 20 inches
In a rectangle, there are 2 similar length measurements & 2 similar width measurements