Answer:



Step-by-step explanation:
Given


Required
Determine the value of s
Express the equations as a matrix
![A =\left[\begin{array}{cc}3s&5\\12&5s\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3s%265%5C%5C12%265s%5Cend%7Barray%7D%5Cright%5D)
Calculate the determinant


Factorize

Apply difference of two squares

For the system to have a unique solution;

So, we have:

Divide both sides by 15

Solve for s


The result can be combined as:

<em>Hence, the system has a unique solution when </em>
<em></em>
Next, we solve for s using Cramer's rule.
We have:
![mat\ x_1 = \left[\begin{array}{cc}3&5\\2&5s\end{array}\right]](https://tex.z-dn.net/?f=mat%5C%20x_1%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%265%5C%5C2%265s%5Cend%7Barray%7D%5Cright%5D)
Calculate the determinant


So:


Factorize

Divide by 5


Similarly:
![mat\ x_2 =\left[\begin{array}{cc}3s&3\\12&2\end{array}\right]](https://tex.z-dn.net/?f=mat%5C%20x_2%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3s%263%5C%5C12%262%5Cend%7Barray%7D%5Cright%5D)
Calculate the determinant


So:


Factorize

Divide by 3

