1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AURORKA [14]
3 years ago
5

Jane was playing a game with her sister, Sally. Jane was down by 7. After her next turn, she was down by 3. Which of the followi

ng mathematical statements represents this scenario?
A. - 7 + -3 = -10
B.
- 7 + 3 = - 4
C. - 7+ 4 = - 3
D. - 7 + - 4 = - 11
Mathematics
1 answer:
STALIN [3.7K]3 years ago
5 0

Answer:

A. -7 + -3 = -10

Step-by-step explanation:

Jane went down by 7, so -7. Then, she went down by 3, so -7 + -3.

-7 + -3 = -10

Hope this helped! <)

(Sorry if this is wrong!)

You might be interested in
When making a book cover, Anwar adds an additional 20 square inches of paper will Anwar used to make a cover for a book 11 inche
Rudik [331]
1.20+8
2.160+1
3.27
4.27+11
5.38
hope i helped
4 0
3 years ago
Choose the equation of the vertical line passing through the point 1,-1
natka813 [3]
A vertical line has the equation of x = a 

If the vertical line goes through a certain point, as in this case, then the y value is irrelevant. It can be anything. It is the x value that is the one you need to use. 

So the answer is x = 1. This equation has no slope that is defined.
5 0
3 years ago
Consider the equation below. (If an answer does not exist, enter DNE.) f(x) = x3 − 6x2 − 15x + 4 (a) Find the interval on which
kozerog [31]

Answer:

a) The function, f(x) is increasing at the intervals (x < -1.45) and (x > 3.45)

Written in interval form

(-∞, -1.45) and (3.45, ∞)

- The function, f(x) is decreasing at the interval (-1.45 < x < 3.45)

(-1.45, 3.45)

b) Local minimum value of f(x) = -78.1, occurring at x = 3.45

Local maximum value of f(x) = 10.1, occurring at x = -1.45

c) Inflection point = (x, y) = (1, -16)

Interval where the function is concave up

= (x > 1), written in interval form, (1, ∞)

Interval where the function is concave down

= (x < 1), written in interval form, (-∞, 1)

Step-by-step explanation:

f(x) = x³ - 6x² - 15x + 4

a) Find the interval on which f is increasing.

A function is said to be increasing in any interval where f'(x) > 0

f(x) = x³ - 6x² - 15x + 4

f'(x) = 3x² - 6x - 15

the function is increasing at the points where

f'(x) = 3x² - 6x - 15 > 0

x² - 2x - 5 > 0

(x - 3.45)(x + 1.45) > 0

we then do the inequality check to see which intervals where f'(x) is greater than 0

Function | x < -1.45 | -1.45 < x < 3.45 | x > 3.45

(x - 3.45) | negative | negative | positive

(x + 1.45) | negative | positive | positive

(x - 3.45)(x + 1.45) | +ve | -ve | +ve

So, the function (x - 3.45)(x + 1.45) is positive (+ve) at the intervals (x < -1.45) and (x > 3.45).

Hence, the function, f(x) is increasing at the intervals (x < -1.45) and (x > 3.45)

Find the interval on which f is decreasing.

At the interval where f(x) is decreasing, f'(x) < 0

from above,

f'(x) = 3x² - 6x - 15

the function is decreasing at the points where

f'(x) = 3x² - 6x - 15 < 0

x² - 2x - 5 < 0

(x - 3.45)(x + 1.45) < 0

With the similar inequality check for where f'(x) is less than 0

Function | x < -1.45 | -1.45 < x < 3.45 | x > 3.45

(x - 3.45) | negative | negative | positive

(x + 1.45) | negative | positive | positive

(x - 3.45)(x + 1.45) | +ve | -ve | +ve

Hence, the function, f(x) is decreasing at the intervals (-1.45 < x < 3.45)

b) Find the local minimum and maximum values of f.

For the local maximum and minimum points,

f'(x) = 0

but f"(x) < 0 for a local maximum

And f"(x) > 0 for a local minimum

From (a) above

f'(x) = 3x² - 6x - 15

f'(x) = 3x² - 6x - 15 = 0

(x - 3.45)(x + 1.45) = 0

x = 3.45 or x = -1.45

To now investigate the points that corresponds to a minimum and a maximum point, we need f"(x)

f"(x) = 6x - 6

At x = -1.45,

f"(x) = (6×-1.45) - 6 = -14.7 < 0

Hence, x = -1.45 corresponds to a maximum point

At x = 3.45

f"(x) = (6×3.45) - 6 = 14.7 > 0

Hence, x = 3.45 corresponds to a minimum point.

So, at minimum point, x = 3.45

f(x) = x³ - 6x² - 15x + 4

f(3.45) = 3.45³ - 6(3.45²) - 15(3.45) + 4

= -78.101375 = -78.1

At maximum point, x = -1.45

f(x) = x³ - 6x² - 15x + 4

f(-1.45) = (-1.45)³ - 6(-1.45)² - 15(-1.45) + 4

= 10.086375 = 10.1

c) Find the inflection point.

The inflection point is the point where the curve changes from concave up to concave down and vice versa.

This occurs at the point f"(x) = 0

f(x) = x³ - 6x² - 15x + 4

f'(x) = 3x² - 6x - 15

f"(x) = 6x - 6

At inflection point, f"(x) = 0

f"(x) = 6x - 6 = 0

6x = 6

x = 1

At this point where x = 1, f(x) will be

f(x) = x³ - 6x² - 15x + 4

f(1) = 1³ - 6(1²) - 15(1) + 4 = -16

Hence, the inflection point is at (x, y) = (1, -16)

- Find the interval on which f is concave up.

The curve is said to be concave up when on a given interval, the graph of the function always lies above its tangent lines on that interval. In other words, if you draw a tangent line at any given point, then the graph seems to curve upwards, away from the line.

At the interval where the curve is concave up, f"(x) > 0

f"(x) = 6x - 6 > 0

6x > 6

x > 1

- Find the interval on which f is concave down.

A curve/function is said to be concave down on an interval if, on that interval, the graph of the function always lies below its tangent lines on that interval. That is the graph seems to curve downwards, away from its tangent line at any given point.

At the interval where the curve is concave down, f"(x) < 0

f"(x) = 6x - 6 < 0

6x < 6

x < 1

Hope this Helps!!!

5 0
3 years ago
QUÉ ES EL BASTA NUMÉRICO
Lemur [1.5K]

Answer:

relating to or expressed as a number or numbers.

Step-by-step explanation:

8 0
2 years ago
Plz help me i have to have this done by 5pm today
katen-ka-za [31]

Answer:

C it wasnt hard

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • Min Jee wants to build a small patio using either brick or paver stones.
    12·1 answer
  • The amount of carbon-14 in animal bones after t years is given by P(t)=P[0]e^(-0.00012097t). A bone has lost 37% of its carbon-1
    14·1 answer
  • Area of a triangle with h = 90 cm and b = 1 in.
    10·1 answer
  • Marcus finds that (3x^2-2y^2+5x)+(4x^2+12y-7x)= 7x^2-10y^2-2x What error did Marcus make?
    5·2 answers
  • : While preparing a large catering order for a fruit salad, Jackie buys 15 apples, 18 oranges and 21 mangoes. All of the fruit i
    11·1 answer
  • Triangle XYZ is a right triangle.
    8·1 answer
  • What is the area of the triangle?
    14·2 answers
  • Find the Tolal Surface Area​
    11·2 answers
  • The vertices of quadrilateral MNPQ are M(−3,−2),N(−1,4),P(2,4), and Q(4,−2). Translate quadrilateral MNPQ using the vector ⟨3,−4
    15·1 answer
  • Can anyone help me ASAP!
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!