1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denis-greek [22]
3 years ago
12

Mrs. Watson shared a cheese pizza among herself and four children. Each person ate 18 of the pizza. How much of the pizza was ea

ten in all?
Mathematics
1 answer:
katrin [286]3 years ago
3 0

Answer:

90

Step-by-step explanation:

You might be interested in
If L=√(x^2+y^2), dx/dt =-4, dy/dt=3, find dL/dt when x=4 and y=3
yulyashka [42]

Hello,

L=\sqrt{x^2+y^2} \\\\\dfrac{dx}{dt}=-4\\\\\dfrac{dy}{dt}=3\\\\x=4, y=3\\\\\dfrac{\partial L} {\partial x} =\dfrac{x}{\sqrt{x^2+y^2}} \\\\\dfrac{\partial L} {\partial y} =\dfrac{y}{\sqrt{x^2+y^2}} \\\\\dfrac{dL}{dt} =\dfrac{\partial L} {\partial x}*\dfrac{dx}{dt}+\dfrac{\partial L} {\partial y}*\dfrac{dy}{dt}\\\\=-4*\frac{-4}{\sqrt{4^2+3^2}} +3*\frac{3}{\sqrt{4^2+3^2}}\\\\=\dfrac{16}{5} +\dfrac{9}{5} \\\\=5\\

5 0
3 years ago
Tan^2 A/1+cot^2 A + cot^2 A/1+tan^2 A=sec^2 A cosec^2 A-3
omeli [17]
\frac{tan^2x}{1+cot^2x}+\frac{cot^2x}{1+tan^2x}=sec^2x\ cosec^2x-3\\\\L=\frac{tan^2x(1+tan^2x)+cot^2x(1+cot^2x)}{(1+cot^2x)(1+tan^2x)}=\frac{tan^2x+tan^4x+cot^2x+cot^4x}{1+tan^2x+cot^2x+tanxcotx}\\\\=\frac{tan^2x+cot^2x+tan^4x+cot^4x}{1+tan^2x+cot^2x+1}=\frac{tan^2x+2+cot^2x+tan^4x-2+cot^4x}{tan^2x+cot^2x+2}

=\frac{(tanx+cotx)^2+(tan^2x-cot^2x)^2}{(tanx+cotx)^2}=\frac{(tanx+cotx)^2}{(tanx+cotx)^2}+\frac{(tan^2x-cot^2x)^2}{(tanx+cotx)^2}\\\\=1+\frac{(tanx-cotx)^2(tanx+cotx)^2}{(tanx+cotx)^2}=1+(tanx-cotx)^2\\\\=1+tan^2x-2tanx\ cotx+cot^2x=tan^2x+cot^2x+1-2\\\\=\left(\frac{sinx}{cosx}\right)^2+\left(\frac{cosx}{sinx}\right)^2-1=\frac{sin^2x}{cos^2x}+\frac{cos^2x}{sin^2x}-1=\frac{sin^4x+cos^4x}{sin^2x\ cos^2x}-1

=\frac{(sin^2x)^2+2sin^2x\ cos^2x+(cos^2x)^2-2sin^2x\ cos^2x}{sin^2x\ cos^2x}-1\\\\=\frac{(sin^2x+cos^2x)^2-2sin^2x\ cos^2x}{sin^2x\ cos^2x}-1=\frac{1^2-2sin^2x\ cos^2x}{sin^2x\ cos^2x}-1\\\\=\frac{1}{sin^2x\ cos^2x}-\frac{2sin^2x\ cos^2x}{sin^2x\ cos^2x}-1=\frac{1}{sin^2x}\cdot\frac{1}{cos^2x}-2-1\\\\=cosec^2x\cdot sec^2x-3=sec^2x\ cosec^2x-3=R
3 0
3 years ago
Which is not equivalent to the others please help
PtichkaEL [24]

Answer:0.801

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
How much will $5000 be worth in 5 years if it is compounded continuously at 3% interest?
Finger [1]
$5,796 is how much it would be. hope it helps
5 0
3 years ago
Read 2 more answers
What is the greatest number of x’s all the terms have in common? <br> PLEASE HELP!
ladessa [460]
The greatest number of xs all the terms have in common is 1x
4 0
3 years ago
Read 2 more answers
Other questions:
  • The drama department is raising money to purchase a new lighting system for the auditorium
    6·1 answer
  • Can someone tell me why the answer for this absolute value equation is all real numbers? ​
    13·1 answer
  • How to find the area of a circle that has a 66 degree angle and a radian of 10
    13·1 answer
  • Free points, please solve -2m+36=2(6m-3)?​
    9·2 answers
  • What is the difference of -9 - 17 =
    7·1 answer
  • Someone please help me
    8·1 answer
  • Write an integer that represents 5 inches of snow melting. *
    9·1 answer
  • 2x – 3y = -5
    11·1 answer
  • X2 – 11x + 5 = -2x<br> Solve equation to the nearest tenth
    11·1 answer
  • Elizabeth wants to ride her bicycle 28.6 miles this week. She has already ridden 19 miles. If she rides for 3 more days, write a
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!