F(x)=(2/3)x^1.5
The centroid position along the x-axis can be obtained by
integrating the function * x to get the moment about the y-axis,
then divide by the area of the graph,
all between x=0 to x=3.5m.
Expressed mathematically,
x_bar=(∫f(x)*x dx )/(∫ f(x) dx limits are between x=0 and x=3.5m
=15.278 m^3 / 6.1113 m^2
=2.500 m
Answer:
-12.5
Step-by-step explanation:
Hope it helps u
FOLLOW MY ACCOUNT PLS PLS
Answer:
31.9secs
6,183.3m
Step-by-step explanation:
Given the equation that models the height expressed as;
h(t ) = -4.9t²+313t+269
At the the max g=height, the velocity is zero
dh/dt = 0
dh/dt = -9,8t+313
0 = -9.8t + 313
9.8t = 313
t = 313/9.8
t = 31.94secs
Hence it takes the rocket 31.9secs to reach the max height
Get the max height
Recall that h(t ) = -4.9t²+313t+269
h(31.9) = -4.9(31.9)²+313(31.9)+269
h(31.9) = -4,070.44+9,984.7+269
h(31.9) = 6,183.3m
Hence the maximum height reached is 6,183.3m
Answer:
Step-by-step explanation:
A = 25% of 16 =
Selling price after reduction = 16 - 2 = $14
B= 25% of 14

= 3.5
Selling price = 14 - 3.5 = $10.5
C = 25% of 10.5

= 2.625 = $ 2.63
Selling price = 10.5 - 2.63 = $ 7.87