You basically just take 3^2 and 2^2 to get 9/4
9/4 is the answer
H = 3b+2
A = (h*b)/2 28 = (3b+2)b/2 56 = 3b²+2b 0 = 3b² + 2b - 56
⊕
![\left \{ {{y=2} \atop {x=2}} \right. \int\limits^a_b {x} \, dx \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta \\ \\ \\ x^{2} \sqrt{x} \sqrt[n]{x} \frac{x}{y} x_{123} x^{123} \leq \geq \pi \alpha \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] x_{123} \int\limits^a_b {x} \, dx \left \{ {{y=2} \atop {x=2}}](https://tex.z-dn.net/?f=%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20%5Cbeta%20%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20%20x%5E%7B2%7D%20%20%5Csqrt%7Bx%7D%20%20%5Csqrt%5Bn%5D%7Bx%7D%20%20%5Cfrac%7Bx%7D%7By%7D%20%20x_%7B123%7D%20%20x%5E%7B123%7D%20%20%5Cleq%20%20%5Cgeq%20%20%5Cpi%20%20%5Calpha%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20x_%7B123%7D%20%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D)
ω
l
∩
Answer:
y = - 8x² + 6
Step-by-step explanation:
The equation of a parabola in vertex form is
y = a(x - h)² + k
where (h, k) are the coordinates of the vertex and a is a multiplier
Here (h, k) = (0, 6), thus
y = a(x - 0)² + 6, that is
y = ax² + 6
To find a substitute (- 1, - 2) into the equation
- 2 = a(- 1)² + 6, that is
- 2 = a + 6 ( subtract 6 from both sides )
- 8 = a
y = - 8x² + 6
Answer:
12.686cm
Step-by-step explanation:
By using pythagoras, we can find CB.
We know that 
Therefore, 
(it has to be positive since it is distance)
now we look at triangle BCD and use SOH CAH TOA.
