1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allochka39001 [22]
3 years ago
8

What value does T point to on the number line below? plz help ill give u brainless

Mathematics
2 answers:
stiv31 [10]3 years ago
6 0

Answer:

I think it's -1/4

julsineya [31]3 years ago
3 0

Answer:

-0.25

Step-by-step explanation:

count how many tick marks are between each number. Since there are four tick marks it is divided by fourths.

You might be interested in
7/8 multiplied by 6/13
4vir4ik [10]
21/52
-----------------------------
6 0
3 years ago
What is 2/15 closest to 0, 1/2, 2
Brums [2.3K]
0 < 2/15 < 1/2 < 2

Each number is decimal form:
0 = 0.00
2/15 = 0.13(repeating 3)
1/2 = 0.50
2 = 2.00

How far from each number closet to 2/15:
0.13 - 0 = 0.13
0.50 - 0.13 = 0.37


2/15 is closer to 0.
8 0
3 years ago
The lifeguards at the beach post information of surfers by placing 3 flags, one above the other, on a flag pole. If there are 7
barxatty [35]

Answer:  210

<u>Step-by-step explanation:</u>

1st Flag    and     2nd Flag      and      3rd Flag

7 choices   x      6 choices        x       5 choices      =    210

Using the formula: \dfrac{7!}{(7-3)!}=\dfrac{7\times 6\times 5\times 4!}{4!}=7\times 6\times 5=\large\boxed{210}

3 0
3 years ago
.
Sophie [7]
C(Tianna) = $40 + $10x
C(Liam) = $20x
6 0
3 years ago
Select all the correct answers.<br> In which pairs of matrices does AB = BA?
horsena [70]

In order to multiply a matrix by another matrix, we multiply the rows in the first matrix by the columns in the other matrix (How this is done is shown below)

To determine the pairs of matrices that AB=BA, we will determine AB and BA for each of the options below.

For the first option

A= \left[\begin{array}{cc}1&0&-2&1&\end{array}\right]; B= \left[\begin{array}{cc}5&0&3&2&\end{array}\right] \\

AB= \left[\begin{array}{cc}(1\times5)+(0\times3)&(1\times0)+(0\times 2)&(-2\times5)+(1\times3)&(-2\times0)+(1\times2)&\end{array}\right]\\AB= \left[\begin{array}{cc}5+0&0+0&-10+3&0+2&\end{array}\right]\\AB = \left[\begin{array}{cc}5&0&-7&2&\end{array}\right] \\

and

BA= \left[\begin{array}{cc}(5\times1)+(0\times-2)&(5\times0)+(0\times 1)&(3\times1)+(2\times-2)&(3\times0)+(1\times2)&\end{array}\right]\\BA= \left[\begin{array}{cc}5+0&0+0&3+-4&0+2&\end{array}\right]\\BA = \left[\begin{array}{cc}5&0&-1&2&\end{array}\right] \\

∴ AB≠BA

For the second option

A= \left[\begin{array}{cc}1&0&-1&2&\end{array}\right]; B= \left[\begin{array}{cc}3&0&6&-3&\end{array}\right] \\

AB= \left[\begin{array}{cc}(1\times3)+(0\times6)&(1\times0)+(0\times -3)&(-1\times3)+(2\times6)&(-1\times0)+(2\times-3)&\end{array}\right]\\AB= \left[\begin{array}{cc}3+0&0+0&-3+12&0+-6&\end{array}\right]\\AB = \left[\begin{array}{cc}3&0&9&-6&\end{array}\right] \\

and

BA= \left[\begin{array}{cc}(3\times1)+(0\times-1)&(3\times0)+(0\times 2)&(6\times1)+(-3\times-1)&(6\times0)+(-3\times2)&\end{array}\right]\\BA= \left[\begin{array}{cc}3+0&0+0&6+3&0+-6&\end{array}\right]\\BA = \left[\begin{array}{cc}3&0&9&-6&\end{array}\right] \\

Here AB = BA

For the third option

A= \left[\begin{array}{cc}1&0&-1&2&\end{array}\right]; B= \left[\begin{array}{cc}5&0&3&2&\end{array}\right] \\

AB= \left[\begin{array}{cc}(1\times5)+(0\times3)&(1\times0)+(0\times 2)&(-1\times5)+(2\times3)&(-1\times0)+(2\times2)&\end{array}\right]\\AB= \left[\begin{array}{cc}5+0&0+0&-5+6&0+4&\end{array}\right]\\AB = \left[\begin{array}{cc}5&0&1&4&\end{array}\right] \\

and

BA= \left[\begin{array}{cc}(5\times1)+(0\times-1)&(5\times0)+(0\times 2)&(3\times1)+(2\times-1)&(3\times0)+(2\times2)&\end{array}\right]\\BA= \left[\begin{array}{cc}5+0&0+0&3+-2&0+4&\end{array}\right]\\BA = \left[\begin{array}{cc}5&0&1&4&\end{array}\right] \\

Here also, AB=BA

For the fourth option

A= \left[\begin{array}{cc}1&0&-2&1&\end{array}\right]; B= \left[\begin{array}{cc}3&0&6&-3&\end{array}\right] \\

AB= \left[\begin{array}{cc}(1\times3)+(0\times6)&(1\times0)+(0\times -3)&(-2\times3)+(1\times6)&(-2\times0)+(1\times-3)&\end{array}\right]\\AB= \left[\begin{array}{cc}3+0&0+0&-6+6&0+-3&\end{array}\right]\\AB = \left[\begin{array}{cc}3&0&0&-3&\end{array}\right] \\

and

BA= \left[\begin{array}{cc}(3\times1)+(0\times-2)&(3\times0)+(0\times 1)&(6\times1)+(-3\times-2)&(6\times0)+(-3\times1)&\end{array}\right]\\BA= \left[\begin{array}{cc}3+0&0+0&6+6&0+-3&\end{array}\right]\\BA = \left[\begin{array}{cc}3&0&12&-3&\end{array}\right] \\

Here, AB≠BA

Hence, it is only in the second and third options that AB = BA

A= \left[\begin{array}{cc}1&0&-1&2&\end{array}\right] B= \left[\begin{array}{cc}3&0&6&-3&\end{array}\right] \\ and A= \left[\begin{array}{cc}1&0&-1&2&\end{array}\right]B= \left[\begin{array}{cc}5&0&3&2&\end{array}\right] \\

Learn more on matrices multiplication here: brainly.com/question/12755004

8 0
3 years ago
Read 2 more answers
Other questions:
  • Find the value of each variable in the figure on the right
    14·2 answers
  • Which pair of measurements is not equivalent?
    15·2 answers
  • In at least four sentence, fully explain all the steps in adding fractions with unlike denominators 2 3/5 + 2/3
    6·1 answer
  • Restrict the domain of f(x) = |x − 3|2 + 2 on which the function is invertible.
    7·1 answer
  • Hi! Can anyone with knowledge on writing Geometry proofs help me? I need assistance with answering this question with a two colu
    14·1 answer
  • A closet contains 7 shirts, 6 skirts, and 4 pairs of shoes. how many possible outfit combinations are there?
    7·2 answers
  • Read the problem and decide whether it has too much or too little
    10·1 answer
  • Which expression is equivalent to21^3 sqrt15 - 9^3 sqrt 15 ?
    8·1 answer
  • 16.8 is 10% of what number? Someone help TWT
    11·2 answers
  • I NEED HELP WITH THIS ASAP!!! PLEASE.
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!