1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexira [117]
3 years ago
13

5x7 ur welcome 21 pts and brainy

Mathematics
2 answers:
saw5 [17]3 years ago
4 0
The answer to your question is 35
miss Akunina [59]3 years ago
4 0

Answer:

35

Step-by-step explanation:

You might be interested in
Which of the following is the area of a rectangle with a length of 7 feet and a width of 5 feet?
mihalych1998 [28]
I don’t know the answer to this question
6 0
3 years ago
Read 2 more answers
May someone assist me?
raketka [301]

Answer:

<h2><u><em>15 is the answer.</em></u></h2>

Step-by-step explanation:

The side lengths are equal - supposedly

30                          25

?                              ?

25 + ? = 45

-25        - 25

? = 20

45 - 30 = 15

The question mark should be equal to 15.

Hope this helps,

Kavitha

3 0
4 years ago
Pls answer I will mark brainliest
Lina20 [59]

Answer:

268.08

Step-by-step explanation:

first you take your radius and put it in the equation V=4/3πr³ when you insert the 4 you calculate it to get 268.08257

3 0
2 years ago
Read 2 more answers
Solve the differential equation dy/dx=x/49y. Find an implicit solution and put your answer in the following form: = constant. he
anygoal [31]

Answer:

The general solution of the differential equation is \frac{49y^{2} }{2}-\frac{x^{2} }{2} = c_{3}

The equation of the solution through the point (x,y)=(7,1) is y=\frac{x}{7}

The equation of the solution through the point (x,y)=(0,-3) is \:y=-\frac{\sqrt{441+x^2}}{7}

Step-by-step explanation:

This differential equation \frac{dy}{dx}=\frac{x}{49y} is a separable first-order differential equation.

We know this because a first order differential equation (ODE) y' =f(x,y) is called a separable equation if the function f(x,y) can be factored into the product of two functions of <em>x</em> and <em>y</em>

f(x,y)=p(x)\cdot h(y) where<em> p(x) </em>and<em> h(y) </em>are continuous functions. And this ODE is equal to \frac{dy}{dx}=x\cdot \frac{1}{49y}

To solve this differential equation we rewrite in this form:

49y\cdot dy=x \cdot dx

And next we integrate both sides

\int\limits {49y} \, dy=\int\limits {x} \, dx

\mathrm{Apply\:the\:Power\:Rule}:\quad \int x^adx=\frac{x^{a+1}}{a+1}\\\int\limits {49y} \, dy=\frac{49y^{2} }{2} + c_{1}

\int\limits {x} \, dx=\frac{x^{2} }{2} +c_{2}

So

\int\limits {49y} \, dy=\int\limits {x} \, dx\\\frac{49y^{2} }{2} + c_{1} =\frac{x^{2} }{2} +c_{2}

We can subtract constants c_{3}=c_{2}-c_{1}

\frac{49y^{2} }{2} =\frac{x^{2} }{2} +c_{3}

An explicit solution is any solution that is given in the form y=y(t). That means that the only place that y actually shows up is once on the left side and only raised to the first power.

An implicit solution is any solution of the form  f(x,y)=g(x,y) which means that y and x are mixed (<em>y</em> is not expressed in terms of <em>x</em> only).

The general solution of this differential equation is:

\frac{49y^{2} }{2}-\frac{x^{2} }{2} = c_{3}

  • To find the equation of the solution through the point (x,y)=(7,1)

We find the value of the c_{3} with the help of the point (x,y)=(7,1)

\frac{49*1^2\:}{2}-\frac{7^2\:}{2}\:=\:c_3\\c_3 = 0

Plug this into the general solution and then solve to get an explicit solution.

\frac{49y^2\:}{2}-\frac{x^2\:}{2}\:=\:0

\mathrm{Add\:}\frac{x^2}{2}\mathrm{\:to\:both\:sides}\\\frac{49y^2}{2}-\frac{x^2}{2}+\frac{x^2}{2}=0+\frac{x^2}{2}\\Simplify\\\frac{49y^2}{2}=\frac{x^2}{2}\\\mathrm{Multiply\:both\:sides\:by\:}2\\\frac{2\cdot \:49y^2}{2}=\frac{2x^2}{2}\\Simplify\\9y^2=x^2\\\mathrm{Divide\:both\:sides\:by\:}49\\\frac{49y^2}{49}=\frac{x^2}{49}\\Simplify\\y^2=\frac{x^2}{49}\\\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

y=\frac{x}{7},\:y=-\frac{x}{7}

We need to check the solutions by applying the initial conditions

With the first solution we get:

y=\frac{x}{7}=\\1=\frac{7}{7}\\1=1\\

With the second solution we get:

\:y=-\frac{x}{7}\\1=-\frac{7}{7}\\1\neq -1

Therefore the equation of the solution through the point (x,y)=(7,1) is y=\frac{x}{7}

  • To find the equation of the solution through the point (x,y)=(0,-3)

We find the value of the c_{3} with the help of the point (x,y)=(0,-3)

\frac{49*-3^2\:}{2}-\frac{0^2\:}{2}\:=\:c_3\\c_3 = \frac{441}{2}

Plug this into the general solution and then solve to get an explicit solution.

\frac{49y^2\:}{2}-\frac{x^2\:}{2}\:=\:\frac{441}{2}

y^2=\frac{441+x^2}{49}\\\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\y=\frac{\sqrt{441+x^2}}{7},\:y=-\frac{\sqrt{441+x^2}}{7}

We need to check the solutions by applying the initial conditions

With the first solution we get:

y=\frac{\sqrt{441+x^2}}{7}\\-3=\frac{\sqrt{441+0^2}}{7}\\-3\neq 3

With the second solution we get:

y=-\frac{\sqrt{441+x^2}}{7}\\-3=-\frac{\sqrt{441+0^2}}{7}\\-3=-3

Therefore the equation of the solution through the point (x,y)=(0,-3) is \:y=-\frac{\sqrt{441+x^2}}{7}

4 0
3 years ago
Write the sentence as a equation Y is equal to j multipled by 316
hram777 [196]

Answer:

y = j x 316, or 316j.  Both would work.

3 0
3 years ago
Other questions:
  • A car can travel 476 miles on 14 gallons of gas. White an equation relation the distance to the number of gallons. How many gall
    6·1 answer
  • What is the simply interest. principal $ 300, rate 6.8 % time half a year 6 months
    14·2 answers
  • Find the cube root of 2^6*3^6*5^3
    11·2 answers
  • The revenue generated by a bakery over x months, in thousands of dollars, is given by the function f(x) = 2(1.2)x. The cost of r
    7·2 answers
  • The angle of inclination from the base of skyscraper A to the top of skyscraper B is approximately 13.713.7degrees°. If skyscrap
    10·1 answer
  • Round 149,640 to the nearest thousand.
    14·2 answers
  • Please please help help this is for the brainies y’all are amazing thank you
    15·2 answers
  • Find the equation of the line that passes through the point (-2,7) and is perpendicular to the line y= 2/5x-1/5
    9·1 answer
  • Help me pls? thank you
    11·2 answers
  • FOR 26 POINTS HELP. In the model of a house, the front-facing gable at the end of the roof forms an isosceles triangle where the
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!