Answer:
Let X the random variable that represent the delivery times of a population, and for this case we know the distribution for X is given by:
Where
and
Since the distribution of X is normal then we know that the distribution for the sample mean
is given by:
And we have;


Step-by-step explanation:
Assuming this question: The delivery times for all food orders at a fast-food restaurant during the lunch hour are normally distributed with a mean of 14.7 minutes and a standard deviation of 3.7 minutes. Let R be the mean delivery time for a random sample of 40 orders at this restaurant. Calculate the mean and standard deviation of
Round your answers to two decimal places.
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problem
Let X the random variable that represent the delivery times of a population, and for this case we know the distribution for X is given by:
Where
and
Since the distribution of X is normal then we know that the distribution for the sample mean
is given by:
And we have;


Answer:
7.5 cm²
Step-by-step explanation:
Dimensions of the large ∆:


Dimensions of the small ∆:


Difference between the area of the large and the small ∆ = 13.5 - 6 = 7.5 cm²
A=LW, we are told that the dimensions are 42 and 48 so:
A=42*48
A=2016in^2
Answer:
2/16
5/40
Step-by-step explanation:
well, we know that θ is in the III Quadrant, where the sine is negative and the cosine is negative as well, or if you wish, where "x" as well as "y" are both negative, now, the hypotenuse or radius of the circle is just a distance amount, so is never negative, so in the equation of cos(θ) = - (2/5), the negative must be the adjacent side, thus

