Answer:
A ≈ 269.81 cm²
Step-by-step explanation:
This shape is a hexagon (it has 6 sides) so let's use the formula for the area of a hexagon.
A = ![\frac{3\sqrt{3} }{2} s^{2}](https://tex.z-dn.net/?f=%5Cfrac%7B3%5Csqrt%7B3%7D%20%7D%7B2%7D%20s%5E%7B2%7D)
Where s is the length of the sides
Substitute:
A = ![\frac{3\sqrt{3} }{2} s^{2}](https://tex.z-dn.net/?f=%5Cfrac%7B3%5Csqrt%7B3%7D%20%7D%7B2%7D%20s%5E%7B2%7D)
A = ![\frac{3\sqrt{3} }{2} 10^{2}](https://tex.z-dn.net/?f=%5Cfrac%7B3%5Csqrt%7B3%7D%20%7D%7B2%7D%2010%5E%7B2%7D)
Solve:
A = ![\frac{3\sqrt{3} }{2} 10^{2}](https://tex.z-dn.net/?f=%5Cfrac%7B3%5Csqrt%7B3%7D%20%7D%7B2%7D%2010%5E%7B2%7D)
A = ![\frac{3\sqrt{3} }{2} 100](https://tex.z-dn.net/?f=%5Cfrac%7B3%5Csqrt%7B3%7D%20%7D%7B2%7D%20100)
Multiply the numerator:
A = ![\frac{3\sqrt{3} }{2} 100](https://tex.z-dn.net/?f=%5Cfrac%7B3%5Csqrt%7B3%7D%20%7D%7B2%7D%20100)
A ≈ ![\frac{5.12 }{2} 100](https://tex.z-dn.net/?f=%5Cfrac%7B5.12%20%7D%7B2%7D%20100)
(The numerator reflects a rounded number, but the actual calculations are exact)
Divide the fraction:
A ≈ ![\frac{5.12 }{2} 100](https://tex.z-dn.net/?f=%5Cfrac%7B5.12%20%7D%7B2%7D%20100)
A ≈ 2.6(100)
Multiply:
A ≈ 2.6(100)
A ≈ 269.81 cm²
Therefore, the area is approximately 269.82 cubic centimeters.
First, we are going to find the vertex of our quadratic. Remember that to find the vertex
![(h,k)](https://tex.z-dn.net/?f=%28h%2Ck%29)
of a quadratic equation of the form
![y=a x^{2} +bx+c](https://tex.z-dn.net/?f=y%3Da%20x%5E%7B2%7D%20%2Bbx%2Bc)
, we use the vertex formula
![h= \frac{-b}{2a}](https://tex.z-dn.net/?f=h%3D%20%5Cfrac%7B-b%7D%7B2a%7D%20)
, and then, we evaluate our equation at
![h](https://tex.z-dn.net/?f=h)
to find
![k](https://tex.z-dn.net/?f=k)
.
We now from our quadratic that
![a=2](https://tex.z-dn.net/?f=a%3D2)
and
![b=-32](https://tex.z-dn.net/?f=b%3D-32)
, so lets use our formula:
![h= \frac{-b}{2a}](https://tex.z-dn.net/?f=h%3D%20%5Cfrac%7B-b%7D%7B2a%7D%20)
![h= \frac{-(-32)}{2(2)}](https://tex.z-dn.net/?f=h%3D%20%5Cfrac%7B-%28-32%29%7D%7B2%282%29%7D%20)
![h= \frac{32}{4}](https://tex.z-dn.net/?f=h%3D%20%5Cfrac%7B32%7D%7B4%7D%20)
![h=8](https://tex.z-dn.net/?f=h%3D8)
Now we can evaluate our quadratic at 8 to find
![k](https://tex.z-dn.net/?f=k)
:
![k=2(8)^2-32(8)+56](https://tex.z-dn.net/?f=k%3D2%288%29%5E2-32%288%29%2B56)
![k=2(64)-256+56](https://tex.z-dn.net/?f=k%3D2%2864%29-256%2B56)
![k=128-200](https://tex.z-dn.net/?f=k%3D128-200)
![k=-72](https://tex.z-dn.net/?f=k%3D-72)
So the vertex of our function is (8,-72)
Next, we are going to use the vertex to rewrite our quadratic equation:
![y=a(x-h)^2+k](https://tex.z-dn.net/?f=y%3Da%28x-h%29%5E2%2Bk)
![y=2(x-8)^2+(-72)](https://tex.z-dn.net/?f=y%3D2%28x-8%29%5E2%2B%28-72%29)
![y=2(x-8)^2-72](https://tex.z-dn.net/?f=y%3D2%28x-8%29%5E2-72)
The x-coordinate of the minimum will be the x-coordinate of the vertex; in other words: 8.
We can conclude that:
The rewritten equation is
![y=2(x-8)^2-72](https://tex.z-dn.net/?f=y%3D2%28x-8%29%5E2-72)
The x-coordinate of the minimum is 8
Answer:
29
Step-by-step explanation:
6 + 3 x 9 - 4
6 + 27 - 4
33 - 4
=29
3
10/100=x/30
Cross multiply
100x=300
Divide each side by 100
X=3