Answer:
I'm pretty sure the answer is D
Answer:
pi/4
Step-by-step explanation:
my answer is in the image above
To solve for the confidence interval for the population
mean mu, we can use the formula:
Confidence interval = x ± z * s / sqrt (n)
where x is the sample mean, s is the standard deviation,
and n is the sample size
At 95% confidence level, the value of z is equivalent to:
z = 1.96
Therefore substituting the given values into the
equation:
Confidence interval = 3 ± 1.96 * 5.8 / sqrt (51)
Confidence interval = 3 ± 1.59
Confidence interval = 1.41, 4.59
Therefore the population mean mu has an approximate range
or confidence interval from 1.41 kg to 4.59 kg.
Mode = 2
hope it helps
----------------------------
The absolute value inequality can be decomposed into two simpler ones.
x < 0
x > -8
<h3>
</h3><h3>
Which two inequalities can be used?</h3>
Here we start with the inequality:
3|x + 4| - 5 < 7
First we need to isolate the absolute value part:
3|x + 4| < 7 + 5
|x + 4| < (7 + 5)/3
|x + 4| < 12/3
|x + 4| < 4
The absolute value inequality can now be decomposed into two simpler ones:
x + 4 < 4
x + 4 > - 4
Solving both of these we get:
x < 4 - 4
x > -4 - 4
x < 0
x > -8
These are the two inequalities.
Learn more about inequalities:
brainly.com/question/24372553
#SPJ1