Answer:
(A) Scatterplot
Step-by-step explanation:
The most helpful visualization to spot outliers would be a scatterplot.
When collecting data on a scatterplot, you can see how the results are similar and which areas have the most answers and such.
There can be multiply outliers on a scatterplot, and they stand out because while most answers will be clumped together, the outliers will not.
Check the picture below.
so let's find the lengths of those two sides in red, since are the length and width of the rectangle.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-6}~,~\stackrel{y_1}{3})\qquad (\stackrel{x_2}{-3}~,~\stackrel{y_2}{6})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ d = \sqrt{[-3-(-6)]^2+[6-3]^2}\implies d=\sqrt{(-3+6)^2+(6-3)^2} \\\\\\ d=\sqrt{9+9}\implies \boxed{d=\sqrt{18}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-6%7D~%2C~%5Cstackrel%7By_1%7D%7B3%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-3%7D~%2C~%5Cstackrel%7By_2%7D%7B6%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%20%3D%20%5Csqrt%7B%5B-3-%28-6%29%5D%5E2%2B%5B6-3%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%28-3%2B6%29%5E2%2B%286-3%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B9%2B9%7D%5Cimplies%20%5Cboxed%7Bd%3D%5Csqrt%7B18%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-6}~,~\stackrel{y_1}{3})\qquad (\stackrel{x_2}{-2}~,~\stackrel{y_2}{-1})~\hfill d=\sqrt{[-2-(-6)]^2+[-1-3]^2} \\\\\\ d=\sqrt{(-2+6)^2+(-1-3)^2}\implies d=\sqrt{16+16}\implies \boxed{d=\sqrt{32}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{area of the rectangle}}{(\sqrt{18})(\sqrt{32})}\implies \sqrt{18\cdot 32}\implies \sqrt{576}\implies 24](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-6%7D~%2C~%5Cstackrel%7By_1%7D%7B3%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-2%7D~%2C~%5Cstackrel%7By_2%7D%7B-1%7D%29~%5Chfill%20d%3D%5Csqrt%7B%5B-2-%28-6%29%5D%5E2%2B%5B-1-3%5D%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B%28-2%2B6%29%5E2%2B%28-1-3%29%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B16%2B16%7D%5Cimplies%20%5Cboxed%7Bd%3D%5Csqrt%7B32%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20the%20rectangle%7D%7D%7B%28%5Csqrt%7B18%7D%29%28%5Csqrt%7B32%7D%29%7D%5Cimplies%20%5Csqrt%7B18%5Ccdot%2032%7D%5Cimplies%20%5Csqrt%7B576%7D%5Cimplies%2024)
Let X = number of minutes.
Plan A = 50 + 0.04X
Plan B = 60 + 0.02X
50 + 0.04X = 60 + 0.02X
Subtract 50 from each side:
0.04X = 10 + 0.02X
Subtract 0.02X from each side:
0.02X = 10
Divide both sides by 0.02
X = 10 / 0.02
X = 500
It will take 500 minutes.
Answer:
Total distance traveled = 1/3 + 1/2 = 2+3/6 = 5/6 miles
Hope this helps!
Step-by-step explanation: