Hope this helps have a nice day
Answer:
<h2><em><u>SAS</u></em><em><u> </u></em><em><u>Congruence</u></em><em><u> </u></em><em><u>Theorem</u></em><em><u> </u></em></h2>
Step-by-step explanation:
In ABC. In DEF
AB. = DE. <em>(</em><em>Given</em><em> </em><em>side</em><em>)</em>
<BAC. = <EDF. <em>(</em><em>Given</em><em> </em><em>side</em><em>)</em>
BC. = EF. <em>(</em><em>Given</em><em> </em><em>side</em><em>)</em>
<em><u>Hence</u></em><em><u>,</u></em>
Triangle ABC is congruent to Triangle DEF by<em><u> </u></em><em><u>SAS</u></em><em><u> </u></em><em><u>Congruence</u></em><em><u> </u></em><em><u>Theorem</u></em><em><u>. </u></em>
Answer:
i think the answer is 3.14
hope that helped
<h2>
Answer:</h2><h2>tysm <3</h2><h2 /><h2>ur so nice!!!!</h2><h2 /><h2>:D</h2><h2><3</h2><h2>uwu</h2>
Cosine of angle A is also x
This is because the sine is opposite over hypotenuse and cosine is adjacent over hypotenuse so both sine and cosine in this example are asking for the same side over the hypotenuse which means cosine of angle A will be the same as sine of angle B
I believe this is correct but I may be wrong, let me know what it ends up being!