Answer:
The set of polynomial is Linearly Independent.
Step-by-step explanation:
Given - {f(x) =7 + x, g(x) = 7 +x^2, h(x)=7 - x + x^2} in P^2
To find - Test the set of polynomials for linear independence.
Definition used -
A set of n vectors of length n is linearly independent if the matrix with these vectors as columns has a non-zero determinant.
The set is dependent if the determinant is zero.
Solution -
Given that,
f(x) =7 + x,
g(x) = 7 +x^2,
h(x)=7 - x + x^2
Now,
We can also write them as
f(x) = 7 + 1.x + 0.x²
g(x) = 7 + 0.x + 1.x²
h(x) = 7 - 1.x + 1.x²
Now,
The coefficient matrix becomes
A = ![\left[\begin{array}{ccc}7&1&0\\7&0&1\\7&-1&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%261%260%5C%5C7%260%261%5C%5C7%26-1%261%5Cend%7Barray%7D%5Cright%5D)
Now,
Det(A) = 7(0 + 1) - 1(7 - 7) + 0
= 7(1) - 1(0)
= 7 - 0 = 7
⇒Det(A) = 7 ≠ 0
As the determinant is non- zero ,
So, The set of polynomial is Linearly Independent.
This is a factorial sequence that can be modeled by An = n!. As you may see, the increasing numbers are factorials of 1,2,3,4, and 5. Factorial means multiplying backwards and is represented by !. For example, 1! is 1*1 =1. 2! is 2*1, 3! is 3*2*1, 4! is 4*3*2*1 etc.
Answer:
The correct answer is A -6/17
X hour and 7 dollars per hour
x = hour
7(x) is your function
thank you for Anlian for pointing it out.. there is 4 hours
so x = 4
plug in 4 in x. 7(4)
7 x 4 = 28
28 is your answer
hope this helps
14 out of 24 can be simplified to 7/12 which is 58.3%