Answer:
y= 7^-t
Step-by-step explanation:
Equation for exponential decay:
An equation represents exponential decay if a term between 0 and 1 is elevated to the independent variable.
In this question:
First option 4 is elevated, so not exponential decay.
Second option:

, thus, the second option represents exponential decay.
Hello,
Use the factoration
a^2 - b^2 = (a - b)(a + b)
Then,
x^2 - 81 = x^2 - 9^2
x^2 - 9^2 = ( x - 9).(x + 9)
Then,
Lim (x^2- 81) /(x+9)
= Lim (x -9)(x+9)/(x+9)
Simplity x + 9
Lim (x -9)
Now replace x = -9
Lim ( -9 -9)
Lim -18 = -18
_______________
The second method without using factorization would be to calculate the limit by the hospital rule.
Lim f(x)/g(x) = lim f(x)'/g(x)'
Where,
f(x)' and g(x)' are the derivates.
Let f(x) = x^2 -81
f(x)' = 2x + 0
f(x)' = 2x
Let g(x) = x +9
g(x)' = 1 + 0
g(x)' = 1
Then the Lim stay:
Lim (x^2 -81)/(x+9) = Lim 2x /1
Now replace x = -9
Lim 2×-9 = Lim -18
= -18
9514 1404 393
Answer:
D) infinitely many
Step-by-step explanation:
There are infinitely many points on any portion of the number line. The shading on the graph indicates all numbers less than or equal to 8 are solutions. There are infinitely many such numbers.
Answer:
(5,354 + x)
or
536.4*x
Step-by-step explanation:
We know that x = 10.
Now we want to write an expression (in terms of x) for the number 5,364.
This could be really trivial, remember that x = 10.
Then: (x - 10) = 0
And if we add zero to a number, the result is the same number, then if we add this to 5,364 the number does not change.
5,364 = 5,364 + (x - 10) = 5,364 + x - 10
5,364 = 5,354 + x
So (5,354 + x) is a expression for the number 5,364 in terms of x.
Of course, this is a really simple example, we could do a more complex case if we know that:
x/10 = 1
And the product between any real number and 1 is the same number.
Then:
(5,364)*(x/10) = 5,364
(5,364/10)*x = 5,364
536.4*x = 5,364
So we just found another expression for the number 5,364 in terms of x.
Answer:
only 4 is incorrect...
1,450,000 = 1.45 x
NOT
1,450,000 = 1.45 x 
Step-by-step explanation: