Answer:
Oils
Step-by-step explanation:
:)
Answer:
The answer is "experiment."
Explanation:
When it comes to finding out whether a new reading program can increase reading comprehension, an experiment is important. <em>This procedure is being used in order to validate a hypothesis, particularly in a research study.</em> In the situation above, you have to validate whether a new reading program can increase the reading comprehension or not.
The experiment consists of the <em>independent, dependent and controlled variables.</em> The independent variables are the ones being changed by the researcher, while the dependent variables tell whether the changes in the independent variable is significant. The controlled variables are the ones that are constant.
The<u> dependent variable above is the reading comprehension, </u>while the <u>new reading program is the independent variable. </u>Examples of controlled variables are the<u> age</u>s of the participants. The age directly affects the reading comprehension, thus it has to be considered.
By applying the knowledge of similar triangles, the lengths of AE and AB are:
a. ![\mathbf{AE = 3.9 $ cm}\\\\](https://tex.z-dn.net/?f=%5Cmathbf%7BAE%20%3D%203.9%20%24%20cm%7D%5C%5C%5C%5C)
b. ![\mathbf{AB = 2.05 $ cm} \\\\](https://tex.z-dn.net/?f=%5Cmathbf%7BAB%20%3D%202.05%20%24%20cm%7D%20%5C%5C%5C%5C)
<em>See the image in the attachment for the referred diagram.</em>
<em />
- The two triangles, triangle AEC and triangle BDC are similar triangles.
- Therefore, the ratio of the corresponding sides of triangles AEC and BDC will be the same.
<em>This implies that</em>:
<em><u>Given:</u></em>
![EC = 8.1 $ cm\\\\DC = 5.4 $ cm\\\\DB = 2.6 cm\\\\AC = 6.15 $ cm](https://tex.z-dn.net/?f=EC%20%3D%208.1%20%24%20cm%5C%5C%5C%5CDC%20%3D%205.4%20%24%20cm%5C%5C%5C%5CDB%20%3D%202.6%20cm%5C%5C%5C%5CAC%20%3D%206.15%20%24%20cm)
<u>a. </u><u>Find the length of </u><u>AE</u><u>:</u>
EC/DC = AE/DB
![\frac{8.1}{5.4} = \frac{AE}{2.6}](https://tex.z-dn.net/?f=%5Cfrac%7B8.1%7D%7B5.4%7D%20%3D%20%5Cfrac%7BAE%7D%7B2.6%7D)
![5.4 \times AE = 8.1 \times 2.6\\\\5.4 \times AE = 21.06](https://tex.z-dn.net/?f=5.4%20%5Ctimes%20AE%20%3D%208.1%20%5Ctimes%202.6%5C%5C%5C%5C5.4%20%5Ctimes%20AE%20%3D%2021.06)
![AE = \frac{21.06}{5.4} = 3.9 $ cm](https://tex.z-dn.net/?f=AE%20%3D%20%5Cfrac%7B21.06%7D%7B5.4%7D%20%3D%203.9%20%24%20cm)
<u>b. </u><u>Find the length of </u><u>AB:</u>
![AB = AC - BC](https://tex.z-dn.net/?f=AB%20%3D%20AC%20-%20BC)
AC = 6.15 cm
To find BC, use AC/BC = EC/DC.
![\frac{6.15}{BC} = \frac{8.1}{5.4}](https://tex.z-dn.net/?f=%5Cfrac%7B6.15%7D%7BBC%7D%20%3D%20%5Cfrac%7B8.1%7D%7B5.4%7D)
![BC \times 8.1 = 6.15 \times 5.4\\\\BC = \frac{6.15 \times 5.4}{8.1} \\\\BC = 4.1](https://tex.z-dn.net/?f=BC%20%5Ctimes%208.1%20%3D%206.15%20%5Ctimes%205.4%5C%5C%5C%5CBC%20%3D%20%5Cfrac%7B6.15%20%5Ctimes%205.4%7D%7B8.1%7D%20%5C%5C%5C%5CBC%20%3D%204.1)
![AB = AC - BC](https://tex.z-dn.net/?f=AB%20%3D%20AC%20-%20BC)
![AB = 6.15 - 4.1\\\\AB = 2.05 $ cm](https://tex.z-dn.net/?f=AB%20%3D%206.15%20-%204.1%5C%5C%5C%5CAB%20%3D%202.05%20%24%20cm)
Therefore, by applying the knowledge of similar triangles, the lengths of AE and AB are:
a. ![\mathbf{AE = 3.9 $ cm}\\\\](https://tex.z-dn.net/?f=%5Cmathbf%7BAE%20%3D%203.9%20%24%20cm%7D%5C%5C%5C%5C)
b. ![\mathbf{AB = 2.05 $ cm} \\\\](https://tex.z-dn.net/?f=%5Cmathbf%7BAB%20%3D%202.05%20%24%20cm%7D%20%5C%5C%5C%5C)
Learn more here:
brainly.com/question/14327552