<h3>1.</h3>
The equation in point-slope form: y - y₁ = m(x - x₁)
slope: m = -2
point: (4, -5) ⇒ x₁ = 4, y₁ = -5
Therefore, the equation of the line in point-slope form:
<h3>
y + 5 = -2(x - 4)</h3>
<h3>2.</h3>
The equation in slope-intercept form: y = mx + b
Parallel lines has the same slope, so:
y = 4x + 2 ⇒ a = 4
If a line passes through the point <em>(x₁, y₁) </em>then the equation y<em>₁</em> = mx<em>₁</em> + b is true.
(4, 6) ⇒ x₁ = 4, y₁ = 6
So: 6 = 4·4 + b ⇒ b = -10
Therefore the equation:
<h3>
y = 4x - 10</h3>
<h3>3.</h3>
a = 3
(-1, 1) ⇒ x₁ = -1, y₁ = 1
So: 1 = 3·(-1) + b ⇒ b = 4
The equation:
<h3>
y = 3x + 4</h3>
<h3>4. </h3>
The product of slopes of perpendicular lines is -1.
2x - 7y = 1 ⇒ 7y = -2x + 1 ⇒ y = -²/₇x + ¹/₇
-²/₇×m = -1 ⇒ m = ⁷/₂
(0, -4) ⇒ x₁ = 0, y₁ = -4
-4 = ⁷/₂·0 + b ⇒ b = -4
The equation:
<h3>
y = ⁷/₂x - 4</h3>
Answer:
The equation is equashon
Step-by-step explanation:
:D
Step-by-step explanation:
5x+8-3x=-10
2x+8= -10
2x=-10-8
2x=-18
therefore x= -9
Distance-Rate-Time Problems. An object that moves at a constant rate is said to be in uniform motion. ... Uniform motion problems may involve objects going the same direction, opposite directions, or round trips. In the diagram below, the two vehicles are traveling the same direction at different rates.