1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sav [38]
2 years ago
9

What is the distance between the points (-4, 8) and (10,-8)?

Mathematics
2 answers:
Semmy [17]2 years ago
8 0

You have to use distance formula.

(-4,8) and (10,-8)

\sqrt{(10 - (-4))^{2} + ((-8) - 8)^{2} }

just for sake of making it easier to explain, let's use this:

[ (10 + 4)^2 + (-8 - 8)^2 ]^(1/2)

------------------------------------------------------------------------------

[ (10 + 4)^2 + (-8 - 8)^2 ]^(1/2)

= [ (14)^2 + (-16)^2 ]^(1/2)

= [196 + 256]^(1/2)

= (452)^(1/2) = \sqrt{452}

= 21.2029...

rounding up to 21 units between those points

Leto [7]2 years ago
5 0

Answer:

14 apart from each other.

You might be interested in
HELP ASAP!!!
Umnica [9.8K]
Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation : 

           (a)/(a^2-16)+(2/(a-4))-(2/(a+4))=0 

Simplify ————— a + 4 <span>Equation at the end of step  1  :</span><span> a 2 2 (—————————+—————)-——— = 0 ((a2)-16) (a-4) a+4 </span><span>Step  2  :</span> 2 Simplify ————— a - 4 <span>Equation at the end of step  2  :</span><span> a 2 2 (—————————+———)-——— = 0 ((a2)-16) a-4 a+4 </span><span>Step  3  :</span><span> a Simplify ——————— a2 - 16 </span>Trying to factor as a Difference of Squares :

<span> 3.1 </span>     Factoring: <span> a2 - 16</span> 

Theory : A difference of two perfect squares, <span> A2 - B2  </span>can be factored into <span> (A+B) • (A-B)

</span>Proof :<span>  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 <span>- AB + AB </span>- B2 = 
        <span> A2 - B2</span>

</span>Note : <span> <span>AB = BA </span></span>is the commutative property of multiplication. 

Note : <span> <span>- AB + AB </span></span>equals zero and is therefore eliminated from the expression.

Check : 16 is the square of 4
Check : <span> a2  </span>is the square of <span> a1 </span>

Factorization is :       (a + 4)  •  (a - 4) 

<span>Equation at the end of step  3  :</span> a 2 2 (————————————————— + —————) - ————— = 0 (a + 4) • (a - 4) a - 4 a + 4 <span>Step  4  :</span>Calculating the Least Common Multiple :

<span> 4.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a-4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>101</span><span><span> a-4 </span>111</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 4.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a+4

Making Equivalent Fractions :

<span> 4.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

Two fractions are called <span>equivalent </span>if they have the<span> same numeric value.</span>

For example :  1/2   and  2/4  are equivalent, <span> y/(y+1)2  </span> and <span> (y2+y)/(y+1)3  </span>are equivalent as well. 

To calculate equivalent fraction , multiply the <span>Numerator </span>of each fraction, by its respective Multiplier.

<span> L. Mult. • L. Num. a —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a+4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 4.4 </span>      Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

a + 2 • (a+4) 3a + 8 ————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  4  :</span> (3a + 8) 2 ————————————————— - ————— = 0 (a + 4) • (a - 4) a + 4 <span>Step  5  :</span>Calculating the Least Common Multiple :

<span> 5.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a+4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>111</span><span><span> a-4 </span>101</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 5.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a-4

Making Equivalent Fractions :

<span> 5.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

<span> L. Mult. • L. Num. (3a+8) —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a-4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 5.4 </span>      Adding up the two equivalent fractions 

(3a+8) - (2 • (a-4)) a + 16 ———————————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  5  :</span> a + 16 ————————————————— = 0 (a + 4) • (a - 4) <span>Step  6  :</span>When a fraction equals zero :<span><span> 6.1 </span>   When a fraction equals zero ...</span>

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the <span>denominator, </span>Tiger multiplys both sides of the equation by the denominator.

Here's how:

a+16 ——————————— • (a+4)•(a-4) = 0 • (a+4)•(a-4) (a+4)•(a-4)

Now, on the left hand side, the <span> (a+4) •</span> (a-4)  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   a+16  = 0

Solving a Single Variable Equation :

<span> 6.2 </span>     Solve  :    a+16 = 0<span> 

 </span>Subtract  16  from both sides of the equation :<span> 
 </span>                     a = -16 

One solution was found :

                  <span> a = -16</span>

4 0
3 years ago
The answer for the length width and square feet
Anvisha [2.4K]

Answer:

whats the drawing.

Step-by-step explanation:

8 0
2 years ago
Can someone help me with the ones that aren’t done
garri49 [273]

5:

C = 5/9(F - 32)

C = 5/9(F) - 17.777

-5/9(F) + C = -17.777

-5/9(F) = -C - 17.777

F = 5/9(C) + 32.0306

7 0
2 years ago
Read 2 more answers
What is the range of the number of minutes that employees commute to work?
Ipatiy [6.2K]

Answer:

Need more information to this question.

Step-by-step explanation:

6 0
2 years ago
Read 2 more answers
A)$150 at 3 % interest for 2 years
tamaranim1 [39]

Answer:

A)  159.135 = X

B) 2,531.25 = X

C)  6,187.5 = X

D) 831,947.46 = X

Step-by-step explanation:

The following investments are required to be calculated:

A) $ 150 at 3% interest for 2 years

B) $ 750.00 at 1/2% interest for 3 years

C) $ 2,250.00 at 1 3/4% interest for 1 year

D) $ 2,550.00 at 3 1/4 interest for 4 years

Therefore, the following calculations must be performed:

A)

150 x (1 + 0.03) ^ 2 = X

150 x 1.03 ^ 2 = X

159.135 = X

B)

750 x (1 + 0.5) ^ 3 = X

750 x 1.5 ^ 3 = X

2,531.25 = X

C)

2,250 x (1 + 1.75) = X

2,250 x 2.75 = X

6,187.5 = X

D)

2,550 x (1 + 3.25) ^ 4 = X

2,550 x 4.25 ^ 4 = X

831,947.46 = X

4 0
2 years ago
Other questions:
  • Please Help!
    12·2 answers
  • !!??!,?!!?!?!?!?!?!!!!??!??!?!
    6·1 answer
  • Lisa wants to cover the top of the lid in beads. She has enough beads to cover 42 square centimeters. Find the area of the lid.
    11·1 answer
  • What is the area of this polygon ?
    10·1 answer
  • How do I solve this?
    11·1 answer
  • Coach Kent brings 3 quarts of sports drink to soccer practice. He gives the same amount of the drink to each of his 16 players .
    5·1 answer
  • a jar of cookies contains 18 different types of cookies. Each type is equally likely to be chosen. Based on your simulation, how
    7·1 answer
  • Each burger cost $3.50 and each soda cost $2.00. You spent a total of $18.00
    8·2 answers
  • The data set represents a month-to-month progression of gasoline prices over the course of several months in an
    12·1 answer
  • How to estimate to the nearest tens 671×32
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!