So animal cells can have various shapes, but plant cells only havethe shapes of their cell walls. That's nice for plants, because it gives them the ability to grow up and out, where they can get lots of sunlight for making their food.
In particular, organelles called chloroplasts allow plants to capture the energy of the Sun in energy-rich molecules; cell walls allow plants tohave rigid structures as varied as wood trunks and supple leaves; and vacuoles allow plant cells to change siz
Exactly why plant cell have wall and animal cell don't :-Cell walls are supporting structures that help the plant to have a fixed shape and protect it from injury. Other than that, it helps to keep the plant turgid so that it can stay firm and upright. Because when it enters a high water potential solution, as water moves in, the water exerts turgor pressure on the cell wall and the cell wall thus exerts an opposing pressure to keep water out. Hence cell wall is needed for the plant.
On the other hand, animal cells do not need to keep the structures, as they have the skeletal system to protect the organs and cushion them against any external Injuries.
This was the all information I had thank you.
i think its c. chlorophyll and other pigments correct me if i'm wrong! <3
Most hydroelectric power plants have a dam and a reservoir. These structures may obstruct fish migration and affect their populations. Operating a hydroelectric power plant may also change the water temperature and the river's flow. These changes may harm native plants and animals in the river and on land. Reservoirs may cover people's homes, important natural areas, agricultural land, and archaeological sites. So building dams can require relocating people. Methane, a strong greenhouse gas, may also form in some reservoirs and be emitted to the atmosphere. Reservoir construction is "drying up" in the United States Gosh, hydroelectric power sounds great -- so why don't we use it to produce all of our power? Mainly because you need lots of water and a lot of land where you can build a dam and reservoir, which all takes a LOT of money, time, and construction. In fact, most of the good spots to locate hydro plants have already been taken. In the early part of the century hydroelectric plants supplied a bit less than one-half of the nation's power, but the number is down to about 10 percent today. The trend for the future will probably be to build small-scale hydro plants that can generate electricity for a single community. As this chart shows, the construction of surface reservoirs has slowed considerably in recent years. In the middle of the 20th Century, when urbanization was occurring at a rapid rate, many reservoirs were constructed to serve peoples' rising demand for water and power. Since Hydroelectric energy is produced by the force of falling water. The capacity to produce this energy is dependent on both the available flow and the height from which it falls. Building up behind a high dam, water accumulates potential energy. This is transformed into mechanical energy when the water rushes down the sluice and strikes the rotary blades of turbine. The turbine's rotation spins electromagnets which generate current in stationary coils of wire. Finally, the current is put through a transformer where the voltage is increased for long distance transmission over power lines.
Hydroelectric-power production in the United States and the world!
(sorry this is the second part)
Answer:
The options
A)Damage to cellular mitochondria
B)Increased ATP levels
C)Activation of the p53 protein
D)Apoptosis
The CORRECT ANSWER IS D
D)Apoptosis
Explanation:
The extrinsic pathway of apoptosis includes extracellular signaling proteins which adhere to cell surface molecules known aa death receptors which in turn activates apoptosis.
The aftermath activates endonucleases prompting division of DNA and ultimately cell death.
Apart from the TNF and Fas ligand, primary signaling molecules also promotes the extrinsic pathway, examples of such are the TNF-related apoptosis-inducing ligand (TRAIL); the cytokineinterleukin-1 (IL-1); and lipopolysaccharide (LPS), the endotoxin located in the outer cell membrane of gram-negative bacteria while the activation of the p53 protein, and decreased ATP levels in the intrinsic pathway results in DNA damage.