1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scilla [17]
3 years ago
7

What is the probability of choosing a

Mathematics
1 answer:
sladkih [1.3K]3 years ago
3 0

Answer:

Probability of choosing a penny at random is 1/5 or 0.2

Step-by-step explanation:

For many probabilities like this one, you have to add the total of materials or items together, even if they are different colors, shape, coin type, etc.

you have 12 pennies, 19 nickles, 14 dimes, and 15 quarters. This adds up to a total of 60 coins. Twelve of those are pennies.

You have twelve possible pennies to choose at random from a total of 60 in a bag.

So 12/60/ This simplifies to a probability of 1/5. If you divide 1 by 5 than it would be 0.2

The probability of choosing a penny from a bag of coins is 1/5, or 0.2.

Hope this helps

You might be interested in
Question 5 (Multiple Choice Worth 4 points)
loris [4]
(-2,2) (0,1)
slope = y1-y2/x1-x2 .... 2-1/-2-0 = -1/2 the answer is C
7 0
3 years ago
Read 2 more answers
PLESSE HELP ME ASAP
harina [27]

Answer:

t55=d

Step-by-step explanation:

55 is mph and since t is time t would be multiplied by 55

4 0
3 years ago
A cable is 60 decimeters long. How long is the cable in meters?
jonny [76]
60 decimeters to meters is 6 meters.
8 0
2 years ago
Read 2 more answers
The third-degree Taylor polynomial about x = 0 of In(1 - x) is
gizmo_the_mogwai [7]

Answer:

\displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Quotient Rule]:                                                                                \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

MacLaurin/Taylor Polynomials

  • Approximating Transcendental and Elementary functions
  • MacLaurin Polynomial:                                                                                     \displaystyle P_n(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... + \frac{f^{(n)}(0)}{n!}x^n
  • Taylor Polynomial:                                                                                            \displaystyle P_n(x) = \frac{f(c)}{0!} + \frac{f'(c)}{1!}(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + ... + \frac{f^{(n)}(c)}{n!}(x - c)^n

Step-by-step explanation:

*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.

<u />

<u>Step 1: Define</u>

<em>Identify</em>

f(x) = ln(1 - x)

Center: x = 0

<em>n</em> = 3

<u>Step 2: Differentiate</u>

  1. [Function] 1st Derivative:                                                                                  \displaystyle f'(x) = \frac{1}{x - 1}
  2. [Function] 2nd Derivative:                                                                                \displaystyle f''(x) = \frac{-1}{(x - 1)^2}
  3. [Function] 3rd Derivative:                                                                                 \displaystyle f'''(x) = \frac{2}{(x - 1)^3}

<u>Step 3: Evaluate Functions</u>

  1. Substitute in center <em>x</em> [Function]:                                                                     \displaystyle f(0) = ln(1 - 0)
  2. Simplify:                                                                                                             \displaystyle f(0) = 0
  3. Substitute in center <em>x</em> [1st Derivative]:                                                             \displaystyle f'(0) = \frac{1}{0 - 1}
  4. Simplify:                                                                                                             \displaystyle f'(0) = -1
  5. Substitute in center <em>x</em> [2nd Derivative]:                                                           \displaystyle f''(0) = \frac{-1}{(0 - 1)^2}
  6. Simplify:                                                                                                             \displaystyle f''(0) = -1
  7. Substitute in center <em>x</em> [3rd Derivative]:                                                            \displaystyle f'''(0) = \frac{2}{(0 - 1)^3}
  8. Simplify:                                                                                                             \displaystyle f'''(0) = -2

<u>Step 4: Write Taylor Polynomial</u>

  1. Substitute in derivative function values [MacLaurin Polynomial]:                 \displaystyle P_3(x) = \frac{0}{0!} + \frac{-1}{1!}x + \frac{-1}{2!}x^2 + \frac{-2}{3!}x^3
  2. Simplify:                                                                                                             \displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

Topic: AP Calculus BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations

Book: College Calculus 10e

5 0
3 years ago
The three cards below form a number pattern
Marrrta [24]
You do not have a picture inserted it is just a grey screen
3 0
3 years ago
Other questions:
  • 4.(06.02 MC)
    10·1 answer
  • Find the vertex of this parabola y=-2x^2+4x-10
    14·1 answer
  • Find the center of the circle: x2 + 2x - 3 + y2 = 5. A) (-1,0) B) (-2,3) C) (1,0) D) (2,-3)
    14·1 answer
  • If Oscar the ostrich travels 78 miles in 2 hours on land, how fast does he travel?
    14·1 answer
  • The three linear equations have y intercept of -3.8 and 7 respectively. Yet, a function can have only one y intercept. which of
    8·1 answer
  • Pleaseee helppp answer correctly !!!!!!!!!!!!!! Will mark Brianliest !!!!!!!!!!!!!!!!!!!!
    11·2 answers
  • Pls help bro plsss pls pls
    13·2 answers
  • WILL MARK BRAINLIEST ASAP PLEASE
    15·1 answer
  • Median of 12,13,19,16,32,15,13
    9·2 answers
  • The area of a quadrilateral whose vertices is ABCD taken in order are (1,2) (-5,6) (7,-4) and (-2,t) be 0 ,find the value of t
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!