Answer:
a
Step-by-step explanation:
easy
Answer:
Rectangular area as a function of x : A(x) = 200*x + 2*x²
A(max) = 5000 m²
Dimensions:
x = 50 m
l = 100 m
Step-by-step explanation:
"x" is the length of the perpendicular side to the wall of the rectangular area to be fenced, and we call "l" the other side (parallel to the wall of the barn) then:
A(r) = x* l and the perimeter of the rectangular shape is
P = 2*x + 2*l but we won´t use any fencing material along the wll of the barn therefore
P = 2*x + l ⇒ 200 = 2*x + l ⇒ l = 200 - 2*x (1)
And the rectangular area as a function of x is:
A(x) = x * ( 200 - 2*x) ⇒ A(x) = 200*x + 2*x²
Taking derivatives on both sides of the equation we get:
A´(x) = 200 - 4*x ⇒ A´= 0
Then 200 - 4*x = 0 ⇒ 4*x = 200 ⇒ x = 50 m
We find the l value, plugging the value of x in equation (1)
l = 200 - 2*x ⇒ l = 200 - 2*50 ⇒ l = 100 m
A(max) = 100*50
A(max) = 5000 m²
question 19
equal to: 3's
less than: 2's, 1's
greater than: 0's
question 20
40 gallons, 12 concentrate, 28 water
this is a fraction of 12/28
simplification: (12) divided by 12 / (28) divided by 12
1/2
1 part concentrate 2 parts water per each of the 40 total gallons.
so color in 33% for concentrate and 66% water
I am totally not wrong :D:D:D:D
<h2>
Answer:</h2>
A. It is a many-to-one function.
<h2>
Step-by-step explanation:</h2>
Hello! It will be a pleasure to help to figure out what's the correct answer to this problem. First of all, we have the following function:

When plotting this function, we get the red graph of the function shown below. So let's solve this as follows:
<h3>A. It is a many-to-one function.</h3>
True
A function is said to be many-to-one there are values of the dependent variable (y-values) that corresponds to more than one value of the independent variable (x-values). To test this, we need to use the Horizontal Line Test. So let's take the horizontal line
, and you can see from the first figure below that
is mapped onto
. so this is a many-to-one function.
<h3>B. It is a one-to-one function.</h3><h3>False</h3>
Since this is a many-to-one function, it can't be a one-to-one function.
<h3>C. It is not a function.</h3>
False
Indeed, this is a function
<h3>D. It fails the vertical line test.</h3>
False
It passes the vertical line test because any vertical line can intersect the graph of the function at most once. An example of this is shown in the second figure below.
<span>Four pounds of apples cost $1.96
so each pound cost: $1.96 / 4 = $0.49 or 49 cents
hope it helps</span>