May I ask what are the statements?
Is the question number 2 you need help
Answer:
x = -|- 2/5
Step-by-step explanation:
there are two opposite solutions:
Algebraically:
13 + (38/60) + (35/3600) = 13. 6431 degrees
If you have a graphing calculator ( I am using a TI-84 plus Silver Edition):
13(press 2nd -> apps -> 1) 38 (press 2nd -> apps -> 2) 35 (press alpha -> +) = 13.6431

From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm find the radius of the circle.

Here, O is the center of the circle.
<u>⟼</u><u> </u><u>Given</u><u> </u><u>:</u>
<u>⟼</u><u> </u><u>To</u><u> </u><u>Find</u><u> </u><u>:</u><u> </u> We have to find the radius OP.
Since QP is tangent, OP perpendicular to QP.
(Since, Tangent is Perpendicular to Radius ⠀⠀⠀⠀⠀⠀⠀at the point of contact)
So, ∠OPQ=90°
<u>⟼</u><u> </u><u>By</u><u> </u><u>Applying</u><u> </u><u>Pythagoras</u><u> </u><u>Theorem</u><u> </u><u>:</u>
OP² + RQ² = OQ²
OP² + (24)² = (25)²
OP² = 625 - 576
OP² = 49
OP = √49
<u>OP</u><u> </u><u>=</u><u> </u><u>7</u><u> </u><u>cm</u>
<u>Hence</u><u>,</u><u> </u><u>The</u><u> </u><u>Radius</u><u> </u><u>is</u><u> </u><u>7</u><u> </u><u>cm</u>
⠀⠀
⠀
<h3>-MissAbhi</h3>