Answer:
Option B.
Step-by-step explanation:
In a regression of y in x, the proportion oh the variation in y explained by the variable x is shown in the R-squared value. So, for answering this question we need to look at the R-squared of such regression.
In this case the R-squared is 98.9% (or 0.989), so we will the option that matches this value. Looking at your options, the one that matches the R-squared is option B.
So, B is the correct option.
Hey there!
Good luck on your assignment and enjoy your day!
~
The equation that models the number of funnel cakes and Oreos he can buy is 3.50x + 2.0y = 42
Data given;
- Cost of Oreos = $2.00
- The total amount spent = $42.00
<h3>What is the Equation</h3>
To solve this problem, we just need to write out an equation to show how he can spend $42.00 in the fair on Oreos and Cakes.
Let x represent the cakes
Let y represent the Oreos
The equation is thus;

The equation that shows the number of Cakes and Oreos can by is
3.50x + 2.0y = 42
Learn more about equation here;
brainly.com/question/13729904
Answer:
x = y = 22
Step-by-step explanation:
It would help to know your math course. Do you know any calculus? I'll assume not.
Equations
x + y = 44
Max = xy
Solution
y = 44 - x
Max = x (44 - x) Remove the brackets
Max = 44x - x^2 Use the distributive property to take out - 1 on the right.
Max = - (x^2 - 44x ) Complete the square inside the brackets.
Max = - (x^2 - 44x + (44/2)^2 ) + (44 / 2)^2 . You have to understand this step. What you have done is taken 1/2 the x term and squared it. You are trying to complete the square. You must compensate by adding that amount on the end of the equation. You add because of that minus sign outside the brackets. The number inside will be minus when the brackets are removed.
Max = -(x - 22)^2 + 484
The maximum occurs when x = 22. That's because - (x - 22) becomes 0.
If it is not zero it will be minus and that will subtract from 484
x + y = 44
xy = 484
When you solve this, you find that x = y = 22 If you need more detail, let me know.
Answer:
1. 31/99 2. 215/999 3. 6704/9999