Answer:
(-19, 55)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
y = -3x - 2
5x + 2y = 15
<u>Step 2: Solve for </u><em><u>x</u></em>
<em>Substitution</em>
- Substitute in <em>y</em>: 5x + 2(-3x - 2) = 15
- Distribute 2: 5x - 6x - 4 = 15
- Combine like terms: -x - 4 = 15
- Isolate <em>x</em> term: -x = 19
- Isolate <em>x</em>: x = -19
<u>Step 3: Solve for </u><em><u>y</u></em>
- Define original equation: y = -3x - 2
- Substitute in <em>x</em>: y = -3(-19) - 2
- Multiply: y = 57 - 2
- Subtract: y = 55
5^b = (5^3)(5^9)
5^b = 5^12
b=12
Answer:
b
Step-by-step explanation:

(3, -3/2)
They are inverses.
The easiest way to solve this is to take the g(x) equation and switch the g(x) with the x. Then solve for your new g(x). Since it looks just like f(x) after doing that, it is an inverse.