Though you do not provide a diagram, I am going to give this a try by assuming that O is the center of the circle, OA is a radius, and angle AOB is a central angle that measures 88 degrees.
We want to find out the area of sector AOB. First, we need to find the area of the entire circle. The area of a circle is given by

and since the radius of this circle is equal to 1, the area is

Next we need to know what fraction of the circle sector AOB represents. The distance around the circle is 360 degrees but the central angle that intercepts arc AB is 88 degrees. That meas that the fraction of the circle the sector represents is given by

We multiply this by the area to obtain

which is the area of the sector.
Answer:
Los radios de los círculos son
,
,
, respectivamente.
Las áreas de los círculos son
,
,
, respectivamente.
Step-by-step explanation:
La circunferencia (
) se calcula mediante la siguiente fórmula:
(1)
Donde
es el radio del círculo.
Una vez hallado el radio, se determina el área de la figura geométrica (
) mediante la siguiente fórmula:
(2)
Si conocemos que las circunferencias son
,
y
, respectivamente:
1) Radios de los círculos
,
, 
,
, 
2) Áreas de los círculos
,
, 
,
, 
<em>Use the Quadratic Formula </em>
x = -4 + 2 √11i/6, -4 - 2√11i/6
<em>Simplify solutions </em>
x = - 2 - √11i/3, - 2 + √11i/3
6 x 2/2 = 6, because 2/2 is 1 and 6x1 is 6