Answer:
a. X is the number of adults in America that need to be surveyed until finding the first one that will watch the Super Bowl.
b. X can take any integer that is greater than or equal to 1.
.
c.
.
d.
.
e.
.
f.
.
Step-by-step explanation:
<h3>a.</h3>
In this setting, finding an adult in America that will watch the Super Bowl is a success. The question assumes that the chance of success is constant for each trial. The question is interested in the number of trials before the first success. Let X be the number of adults in America that needs to be surveyed until finding the first one who will watch the Super Bowl.
<h3>b.</h3>
It takes at least one trial to find the first success. However, there's rare opportunity that it might take infinitely many trials. Thus, X may take any integer value that is greater than or equal to one. In other words, X can be any positive integer:
.
<h3>c.</h3>
There are two discrete distributions that may model X:
- The geometric distribution. A geometric random variable measures the number of trials before the first success. This distribution takes only one parameter: the chance of success on each trial.
- The negative binomial distribution. A negative binomial random variable measures the number of trials before the r-th success. This distribution takes two parameters: the number of successes
and the chance of success on each trial
.
(note that
) is equivalent to
. However, in this question the distribution of
takes two parameters, which implies that
shall follow the negative binomial distribution rather than the geometric distribution. The probability of success on each trial is
.
.
<h3>d.</h3>
The expected value of a negative binomial random variable is equal to the number of required successes over the chance of success on each trial. In other words,
.
<h3>e.</h3>
.
Some calculators do not come with support for the negative binomial distribution. There's a walkaround for that as long as the calculator supports the binomial distribution. The r-th success occurs on the n-th trial translates to (r-1) successes on the first (n-1) trials, plus another success on the n-th trial. Find the chance of (r-1) successes in the first (n-1) trials and multiply that with the chance of success on the n-th trial.
<h3>f.</h3>
.
Answer:
Step-by-step explanation:
In this geometry, the triangles are similar. That means corresponding sides are proportional:
short side/long side = x/10 = 10/25
x = 100/25 = 4 . . . . multiply by 10
__
hypotenuse/short side = y/x = (x+25)/y
y² = 4(29) = 116 . . . . . use 4 for x; cross multiply
y = √116 ≈ 10.8
A) 3. 50+15+15+15= 95.
b) 4. 25+25+25+25= 100.
c) 7. 50+15+15+15+15+15+15+15= 155.
d) 6. 25+25+25+25+25+25= 150.
Answer:y = 4x - 5
Step-by-step explanation:
point slope form is in the form of y = mx + b. m is the slope so we plug thatin and have the equation y = 4x + b. since we also have a point on the line we can plug those into the equation too. -1 = 4 * 1 + b.
now we simplify that through algebra.
-1 = 4 + b
b= -5
sp we get b and we can say the equation is y = 4x -5
The exact number of Pi is 3.14159265359.