Answer:
The plasmid must express a gene for ampicillin resistance (the protein product of the <em>bla</em> gene codes for beta-lactamase, the protein that breaks down ampicillin). The colonies on the ampicillin plate are antibiotic resistant. This means that they have taken up the transformed plasmids expressing both the <em>bla</em> gene and the GFP gene.
Explanation:
The transformation involved the genetic modification of a plasmid to incorporate the gene encoding the green fluorescent protein (GFP) from jelly fish. GFP makes cells glow under UV light.
In genetic engineering, scientists use antibiotic resistance as markers to indicate cells that have been transformed. By incorporating an antibiotic resistance gene such as <em>bla</em> into the vector (plasmid) and then growing the cells in antibiotic media, scientists determine which colonies have taken up the plasmid. Therefore, if the cells survive, this means that they contain the plasmid with antibiotic resistance gene as well as the GFP gene.
Nitrification or nitrogen fixation
Im thinking its D. bcuz all three A. B. C. are true
Answer:
Crossing two chickens heterozygous for the trait feather color, when brown feathers are dominant over red feathers, will produce offspring with brown and red feathers in a brown:red phenotypic ratio of 3:1.
Explanation:
Knowing that in chickens brown feathers are the expression of the dominant allele (B) and the recessive allele is red (b), crossing two heterozygous individuals (Bb) will result in offspring that are likely to have brown or red feathers.
The cross can be represented by a Punnett Square:
<u>Bb X Bb cross
</u>
alleles B b
B BB Bb
b Bb bb
Where the result is:
<u>Genotypes</u>:
<u>Phenotypes</u>:
- Brown feathers, 75%
- Red feathers, 25%.
In this case, the probability of having brown or red feathers is 3:1.
Shskdkdjfkkgg
Jsjdkfodkdjdkdkfkf
Jsjdkfkfkfjfkf