Answer:
This question lacks options, options are:
A) ATP
B) NADP
C) Pryuvate
D) glucose
E) acetyl-CoA.
The correct answer is C) Pyruvate.
Explanation:
Pyruvate is a very important compound for the cell since it is a key substrate for energy production and glucose synthesis (neo-glycogenesis), that is, pyruvate is the end product of glucose breakdown in glycolysis. Before entering the mitochondria, it can be converted to lactate, through an anaerobic reaction (in the absence or under oxygen supply) of low performance in energy production, when the main pathway is interfered with. It can also be converted to the amino acid alanine. Within the mitochondria, it can be transformed, by pyruvate dehydrogenase (PDH), into acetyl-coenzyme A (acetyl-CoA), the entry point (substrate) of the Krebs cycle. In addition, by means of pyruvate carboxylase, it can be transformed into oxalacetate, which constitutes the first step in neoglycogenesis.
The truth about blood buffering is that 1). mantains the ph of blood near to 7.4. 2) utilizes the H2CO3/HCO3– conjugate acid/base pair and 3) is facilitated by the enzyme carbonic anhydrase, which interconverts carbon dioxide and water to carbonic acid. Have in mind that the buffer is written as the following: <span>CO2(aq) + H2O(l) <==> H+(aq) + HCO3^-(aq) </span>
A. Trees regain their leaves