Answer:
The area of the associated sector is
Step-by-step explanation:
step 1
Find the radius of the circle
we know that
The circumference of a circle is equal to

we have

substitute and solve for r


step 2
Find the area of the circle
we know that
The area of the circle is equal to

we have

substitute

step 3
Find the area of the associated sector
we know that
subtends the complete circle of area 
so
by proportion
Find the area of a sector with a central angle of 

X^2-2x -3 =0
a =1 b =-2 and c = -3
x = - (-2) +/- sqrt (-2)^2 - 4(1)(-3)
--------------------------------------
2(1)
x = + 2 +/- sqrt [(4) - 4(-3)]
-------------------------------
2
x = +2 +/- sqrt [4 + 12]
--------------------------
2
x = +2 +/- sqrt[16]
-------------------
2
x = +2 +/- (4)
-------------
2
x = 2 + 4 or 2 -4
------- ------
2 2
x = 6/2 or -2/2
x = 3 or x = -1
Answer:
Option A - The distance Train A traveled in 1 h is equal to the distance Train B traveled in 1 h.
Step-by-step explanation:
Given : The distance Train A traveled is modeled by the function 
where d represents distance in miles and t represents time in hours.
To find : How does the distance Train A traveled in 1 hour compare to the distance Train B traveled in 1 hour?
Solution :
Distance traveled by Train A in 1 hour is


Distance traveled by Train B in 1 hour is


or for B, we have 324 miles in 4 hours. If that is at a constant speed, it travels 324/4 = 81 miles in one hour
Therefore, The distance Train A traveled in 1 h is equal to the distance Train B traveled in 1 h.
Hence, Option A is correct.
Answer:
The solution to the equation system given is:
- <u>x = 2</u>
- <u>y = -1</u>
Step-by-step explanation:
First, we must know the equations given:
- 2x + 3y = 1
- 3x + y = 5
Following Crammer's Rule, we have the matrix form:
![\left[\begin{array}{ccc}2&3\\3&1\end{array}\right] =\left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}1\\5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%263%5C%5C3%261%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
Now we solve using the determinants:
![x=\frac{\left[\begin{array}{ccc}1&3\\5&1\end{array}\right]}{\left[\begin{array}{ccc}2&3\\3&1\end{array}\right] } =\frac{(1*1)-(5*3)}{(2*1)-(3*3)} = \frac{1-15}{2-9} =\frac{-14}{-7} = 2](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%263%5C%5C5%261%5Cend%7Barray%7D%5Cright%5D%7D%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%263%5C%5C3%261%5Cend%7Barray%7D%5Cright%5D%20%7D%20%3D%5Cfrac%7B%281%2A1%29-%285%2A3%29%7D%7B%282%2A1%29-%283%2A3%29%7D%20%3D%20%5Cfrac%7B1-15%7D%7B2-9%7D%20%3D%5Cfrac%7B-14%7D%7B-7%7D%20%3D%202)
![y=\frac{\left[\begin{array}{ccc}2&1\\3&5\end{array}\right]}{\left[\begin{array}{ccc}2&3\\3&1\end{array}\right] } =\frac{(2*5)-(3*1)}{(2*1)-(3*3)}=\frac{10-3}{2-9} =\frac{7}{-7}=-1](https://tex.z-dn.net/?f=y%3D%5Cfrac%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%261%5C%5C3%265%5Cend%7Barray%7D%5Cright%5D%7D%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%263%5C%5C3%261%5Cend%7Barray%7D%5Cright%5D%20%7D%20%3D%5Cfrac%7B%282%2A5%29-%283%2A1%29%7D%7B%282%2A1%29-%283%2A3%29%7D%3D%5Cfrac%7B10-3%7D%7B2-9%7D%20%3D%5Cfrac%7B7%7D%7B-7%7D%3D-1)
Now, we can find the answer which is x= 2 and y= -1, we can replace these values in the equation to confirm the results are right, with the first equation:
- 2x + 3y = 1
- 2(2) + 3(-1)= 1
- 4 - 3 = 1
- 1 = 1
And, with the second equation:
- 3x + y = 5
- 3(2) + (-1) = 5
- 6 - 1 = 5
- 5 = 5
Answer:
-4and1/8
Step-by-step explanation:math