Based on the calculations, all of the numbers belong to this arithmetic sequence.
<h3>How to calculate an arithmetic sequence?</h3>
Mathematically, the nth term of an arithmetic sequence can be calculated by using this expression:

<u>Where:</u>
- d is the common difference.
- a₁ is the first term of an arithmetic sequence.
- n is the total number of terms.
Next, we would determine the common difference as follows:
d = a₂ - a₁
d = 105 - 99 = 6.
d = a₃ - a₂
d = 111 - 105 = 6.
d = a₄ - a₃
d = 117 - 111 = 6.
Based on the calculations, all of the numbers belong to this arithmetic sequence.
Read more on arithmetic sequence here: brainly.com/question/12630565
#SPJ1
Complete Question:
What is the number that does not belong to this sequence 99, 105, 111, 117, 123, 129, 135, 141, 147, 153
That person is really smart good job
No, Rays go one way only since a point block te other way. Otherwise it wont be a ray :)
Answer:
???
Step-by-step explanation:
Could I have the L&W please?
The first step is to determine the distance between the points, (1,1) and (7,9)
We would find this distance by applying the formula shown below
![\begin{gathered} \text{Distance = }\sqrt[]{(x2-x1)^2+(y2-y1)^2} \\ \text{From the graph, } \\ x1\text{ = 1, y1 = 1} \\ x2\text{ = 7, y2 = 9} \\ \text{Distance = }\sqrt[]{(7-1)^2+(9-1)^2} \\ \text{Distance = }\sqrt[]{6^2+8^2}\text{ = }\sqrt[]{100} \\ \text{Distance = 10} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ctext%7BDistance%20%3D%20%7D%5Csqrt%5B%5D%7B%28x2-x1%29%5E2%2B%28y2-y1%29%5E2%7D%20%5C%5C%20%5Ctext%7BFrom%20the%20graph%2C%20%7D%20%5C%5C%20x1%5Ctext%7B%20%3D%201%2C%20y1%20%3D%201%7D%20%5C%5C%20x2%5Ctext%7B%20%3D%207%2C%20y2%20%3D%209%7D%20%5C%5C%20%5Ctext%7BDistance%20%3D%20%7D%5Csqrt%5B%5D%7B%287-1%29%5E2%2B%289-1%29%5E2%7D%20%5C%5C%20%5Ctext%7BDistance%20%3D%20%7D%5Csqrt%5B%5D%7B6%5E2%2B8%5E2%7D%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7B100%7D%20%5C%5C%20%5Ctext%7BDistance%20%3D%2010%7D%20%5Cend%7Bgathered%7D)
Distance = 10 units
If one unit is 70 meters, then the distance between both entrances is
70 * 10 = 700 meters