Answer:
Step-by-step explanation:
To find the time at which both balls are at the same height, set the equations equal to each other then solve for t.
h = -16t^2 + 56t
h = -16t^2 + 156t - 248
-16t^2 + 56t = -16t^2 + 156t - 248
You can cancel out the -16t^2's to get
56t = 156t - 248
=> 0 = 100t - 248
=> 248 = 100t
=> 2.48 = t
Using this time value, plug into either equation to find the height.
h = 16(2.48)^2 + 56(2.48)
Final answer:
h = 40.4736
Answer:
B. -7 + 8n
Step-by-step explanation:
-3.5(2 + -3n) + -2.5n = 0
(2 * -3.5 + -3n * -3.5) + -2.5n = 0
(-7 + 10.5n) + -2.5n = 0
0.5n + -2.5n = 8n
-7 + 8n
Answer:
x-intercept(s): (
0
,
0
)
y-intercept(s): (
0
,
0
)
Step-by-step explanation: