Answer:
The measure of ∠EFG is 52°
Step-by-step explanation:
Given line m is parallel to line p. m∠HEF = 39º and m∠IGF = 13º.we have to find m∠EFG.
In ΔJFG,
By angle sum property of triangle, which states that sum of all angles of triangle is 180°
m∠FJG+m∠JGF+m∠JFG=180°
⇒ 39°+13°+m∠JFG=180°
⇒ m∠JFG=180°-39°-13°=128°
As JFE is a straight line ∴ ∠JFG and ∠EFG forms linear pair
⇒ m∠JFG+m∠EFG=180°
⇒ 128°+m∠EFG=180°
⇒ m∠EFG=52°
The measure of ∠EFG is 52°
Given:

To find:
The correct function.
Explanation:
Let us consider the function given in option D.

Differentiating with respect to x we get,

Substituting x = 2 in the function f(x), we get

Therefore, the given conditions are satisfied.
So, the function is,

Final answer: Option D
C(F) is the degrees Celsius given the degrees Fahrenheit.<span />