1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miskamm [114]
3 years ago
12

Why are the solutions to the proportions StartFraction 50 over x EndFraction = StartFraction 10 over 20 EndFraction and StartFra

ction 10 over 50 EndFraction = StartFraction 20 over x EndFraction the same? because both result in the equation 20 x = 500, which simplifies to x = 25 because both result in the equation 20 x = 500, which simplifies to x = 250 because both result in the equation 10 x = 1,000, which simplifies to x = 10 because both result in the equation 10 x = 1,000, which simplifies to x = 100
Mathematics
2 answers:
asambeis [7]3 years ago
6 0

Answer:

because both result in the equation 10 x = 1,000, which simplifies to x = 100

Step-by-step explanation:

50 / x = 10/20

Cross product

50 * 20 = x * 10

1000 = 10x

x = 1000 / 10

= 100

10/50 = 20/x

Cross product

10 * x = 50 * 20

10x = 1000

x = 1000/10

= 100

The answer is :

because both result in the equation 10 x = 1,000, which simplifies to x = 100

Taya2010 [7]3 years ago
4 0

Answer: trump 2020 MAGA

Step-by-step explanation:

You might be interested in
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
What is the height of an equilateral triangle with all sides equal to 8
vitfil [10]

an equilateral triangle has a square root height if 3 so I'm guessing if you multiply square root of 3 times 8

3 0
3 years ago
Read 2 more answers
10. <br>V=720 cm<br>L=?<br>P=15 cm<br>T=8 cm<br>A. 6 cm<br>B. 8 cm<br>C.10 cm<br>D. 12 cm​
grin007 [14]

Answer:

6 cm

Step-by-step explanation:

Given the information :

V=720 cm

L=?

P=15 cm

T=8 cm

The volume = L * P * T

V = L * P * T

720 = L * 15 * 8

720 = L * 120

L = 720 / 120

L = 6 cm

5 0
3 years ago
GEOMETRY HELP PLS! 50 POINTS!!
icang [17]

Answer:

the answer is c

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Sin theta+costheta/sintheta -costheta+sintheta-costheta/sintheta+costheta=2sec2/tan2 theta -1
sleet_krkn [62]

\dfrac{sin\theta + cos\theta}{sin\theta-cos\theta}+\dfrac{sin\theta-cos\theta}{sin\theta+cos\theta}=\dfrac{2sec^2\theta}{tan^2\theta-1}

From Left side:

\dfrac{sin\theta + cos\theta}{sin\theta-cos\theta}\bigg(\dfrac{sin\theta+cos\theta}{sin\theta+cos\theta}\bigg)+\dfrac{sin\theta-cos\theta}{sin\theta+cos\theta}\bigg(\dfrac{sin\theta-cos\theta}{sin\theta-cos\theta}\bigg)

\dfrac{sin^2\theta+2cos\thetasin\theta+cos^2\theta}{sin^2\theta-cos^2\theta}+\dfrac{sin^2\theta-2cos\thetasin\theta+cos^2\theta}{sin^2\theta-cos^2\theta}

NOTE: sin²θ + cos²θ = 1

\dfrac{1 + 2cos\theta sin\theta}{sin^2\theta-cos^2\theta}+\dfrac{1-2cos\theta sin\theta}{sin^2\theta-cos^2\theta}

\dfrac{1 + 2cos\theta sin\theta+1-2cos\theta sin\theta}{sin^2\theta-cos^2\theta}

\dfrac{2}{sin^2\theta-cos^2\theta}

\dfrac{2}{\bigg(sin^2\theta-cos^2\theta\bigg)\bigg(\dfrac{cos^2\theta}{cos^2\theta}\bigg)}

\dfrac{2sec^2\theta}{\dfrac{sin^2\theta}{cos^2\theta}-\dfrac{cos^2\theta}{cos^2\theta}}

\dfrac{2sec^2\theta}{tan^2\theta-1}

Left side = Right side <em>so proof is complete</em>

8 0
3 years ago
Read 2 more answers
Other questions:
  • A skate board ramp is built on an incline so that it rests on a porch that is 1.3m high. The bottom of the ramp is placed 2.5m f
    10·1 answer
  • Solve for x and y intercepts
    12·1 answer
  • PLEASE HELP ME WITH THESE TWO
    6·1 answer
  • Patrick wants to estimate the percentage of parents who use cloth diapers. He asks a randomly selected group of 125 parents whet
    14·1 answer
  • I need a lot of help please someone!
    14·1 answer
  • How do you sort the polygons such as rectangle, square, parallelogram,, trapezoid, and quadrilateral? This question is asking th
    9·1 answer
  • I need help quick it is due in 3 hours
    8·1 answer
  • Please help I’ll give brainliest
    13·2 answers
  • Keith bought a video game for $660. Amy only spent 1/3 of the cost on hers. How much did Amy spend on her video game system?
    15·1 answer
  • Find the missing angle of a triangle with 60 degrees and 40 degrees
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!