the answer is 70,000+3,000+400+80+9
28,000,000 will be the answer
<u>Answer:</u>
Below!
<u>Step-by step explanation:</u>
<u>We know that:</u>
<u>Solution of Question A:</u>
<u>Percent of children: Total children/Total attendance</u>
- => 400/1500
- => 4/15
- => 0.27 (Rounded to nearest hundredth)
- => 0.27 x 100
- => 27%
<u>Hence, the percent of children is about 27%.</u>
<u>Solution of Question B:</u>
<u>Percent of women: Total women/Total attendance</u>
- => 850/1500
- => 85/150
- => 17/30
- => 17/30 x 100
- => 17/3 x 10
- => 170/3
- => 56.67%
<u>Hence, the percent of women is 56.67%.</u>
<u>Solution of Question C:</u>
- 400 + 850 + m = 1500
- => 1250 + m = 1500
- => m = 1500 - 1250
- => m = 250
<u>Percent of men: Total men/Total attendance</u>
- => 250/1500
- => 1/6
- => 0.17 (Rounded to nearest hundredth)
- => 0.17 x 100
- => 17%
<u>Hence, the percent of men is about 17%</u>
Hoped this helped.

<u>Options</u>
- Counting rule for permutations
- Counting rule for multiple-step experiments
- Counting rule for combinations
- Counting rule for independent events
Answer:
(C)Counting rule for combinations
Step-by-step explanation:
When selecting n objects from a set of N objects, we can determine the number of experimental outcomes using permutation or combination.
- When the order of selection is important, we use permutation.
- However, whenever the order of selection is not important, we use combination.
Therefore, The counting rule that is used for counting the number of experimental outcomes when n objects are selected from a set of N objects where order of selection is not important is called the counting rule for combinations.