Well it depends on the type of crayon box that she buys. For instance, some crayon boxes have a 24 pack box of crayons while others have 64 or maybe even a 16 pack box of crayons. So it all depends on what kind of box she bought.
Check the picture below.
let's notice the "white" ∡1 is an inscribed angle with an intercepted arc of (x-32), and the "green" ∡5 is also an inscribed angle with an intercepted arc of (2x).
the ∡6 and ∡2 are both external angles, however they intercepted two arcs, a "far arc" and a "near arc", thus we'll use the far arc - near arc formula, as you see in the picture, and we'll use the inscribed angle theorem for the other two.
![\bf \measuredangle 1=\cfrac{x-32}{2}\implies \measuredangle 1 =\cfrac{32}{2}\implies \measuredangle 1 = 16 \\\\[-0.35em] ~\dotfill\\\\ \measuredangle 5 =\cfrac{2x}{2}\implies \measuredangle 5 = x\implies \measuredangle 5 = 64 \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cmeasuredangle%201%3D%5Ccfrac%7Bx-32%7D%7B2%7D%5Cimplies%20%5Cmeasuredangle%201%20%3D%5Ccfrac%7B32%7D%7B2%7D%5Cimplies%20%5Cmeasuredangle%201%20%3D%2016%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cmeasuredangle%205%20%3D%5Ccfrac%7B2x%7D%7B2%7D%5Cimplies%20%5Cmeasuredangle%205%20%3D%20x%5Cimplies%20%5Cmeasuredangle%205%20%3D%2064%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \measuredangle 2 = \cfrac{(2x+8)~~-~~(x-32)}{2}\implies \measuredangle 2=\cfrac{2x+8-x+32}{2} \\\\\\ \measuredangle 2=\cfrac{x+40}{2}\implies \measuredangle 2=\cfrac{104}{2}\implies \measuredangle 2=52 \\\\[-0.35em] ~\dotfill\\\\ \measuredangle 6=\cfrac{[(2x+8)+(x)]~~-~~(2x)}{2}\implies \measuredangle 6=\cfrac{3x+8-2x}{2}\implies \measuredangle 6=\cfrac{x+8}{2} \\\\\\ \measuredangle 6=\cfrac{72}{2}\implies \measuredangle 6=36](https://tex.z-dn.net/?f=%5Cbf%20%5Cmeasuredangle%202%20%3D%20%5Ccfrac%7B%282x%2B8%29~~-~~%28x-32%29%7D%7B2%7D%5Cimplies%20%5Cmeasuredangle%202%3D%5Ccfrac%7B2x%2B8-x%2B32%7D%7B2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cmeasuredangle%202%3D%5Ccfrac%7Bx%2B40%7D%7B2%7D%5Cimplies%20%5Cmeasuredangle%202%3D%5Ccfrac%7B104%7D%7B2%7D%5Cimplies%20%5Cmeasuredangle%202%3D52%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cmeasuredangle%206%3D%5Ccfrac%7B%5B%282x%2B8%29%2B%28x%29%5D~~-~~%282x%29%7D%7B2%7D%5Cimplies%20%5Cmeasuredangle%206%3D%5Ccfrac%7B3x%2B8-2x%7D%7B2%7D%5Cimplies%20%5Cmeasuredangle%206%3D%5Ccfrac%7Bx%2B8%7D%7B2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cmeasuredangle%206%3D%5Ccfrac%7B72%7D%7B2%7D%5Cimplies%20%5Cmeasuredangle%206%3D36)
Answer:
Amy will need to read 1 page each day.
Step-by-step explanation:
Total number of page of the magazine = 137 pages
Read pages of the magazine = 42 pages
Remaining pages to be read = 137 pages - 42 pages = 95 pages
She spends 10 days reading the same number of pages each day until she finishes.
The number of pages read in each of the 10 days = 95 pages / 10 days
= 9.5 pages
In 10 days Amy reads 9.5 pages
In a day she reads ?
10 days -----------> 9.5 pages
1 day ----------------> ?
= 0.95 page
approximately 1 page per day
Thus, Amy will need to read 1 page each day.
There is a 40% chance that the randomly selected child will have a speaking part.