1)Rewrite the table:
70, 49, 34.3, 24.01, 11.807 {The original size of the wound =70}
2) write the quotient of each number by the number before & notice the value:
49/70= 0.7
34.3/49 = 0.7
24.01/34.3 =0.7
16.0807/24.01 = 0.67 ≈0.7
You notice this is a geometric progression with r 0.7
The last term in a GP =ar^⁽ⁿ⁻¹⁾
3) Domain and Range of this function:
Last term = a₁.rⁿ⁻¹. let last term be y==> f(n) = y =70(0.7)ⁿ⁻¹
or f(n) = y = 70(0.7)ⁿ / 0.7==> f(n) = [(0.7)ⁿ ]/ 100.
This is a decreasing exponential function where the coefficient
raised to n is < 1.
The domain is for all n>= 0.
When n→∞, f(n)→0; For n=0==>f(n) =70. So the range of f(n) is:<=70
hi i know i’m late but to help out any future people, the answer is
Row One: Statement: 3/2=slope Reason: Definition of Slope
Row 2: Statement: 3/2=6/4 Reason: Triangle A is similar to Triangle B
The given equation
x/2 = y/3 = z/4
can be broken into three separate equations which I'll call equations (A), (B) and (C)
- x/2 = y/3 ..... equation (A)
- y/3 = z/4 .... equation (B)
- x/2 = z/4 .... equation (C)
We'll start off solving for z in equation (C)
x/2 = z/4
4x = 2z ... cross multiply
2z = 4x
z = 4x/2 ... divide both sides by 2
z = 2x
Now let's solve for y in equation (A)
x/2 = y/3
3x = 2y
2y = 3x
y = 3x/2
y = (3/2)x
y = 1.5x
The results of z = 2x and y = 1.5x both have the right hand sides in terms of x. This will allow us to replace the variables y and z with something in terms of x, which means we'll have some overall expression with x only. The idea is that expression should simplify to 3 if we played our cards right.
We won't be using equation (B) at all.
---------------------
The key takeaway from the last section is that
Let's plug those items into the expression (2x-y+5z)/(3y-x) to get the following:
(2x-y+5z)/(3y-x)
(2x-y+5(2x))/(3y-x) ..... plug in z = 2x
(2x-y+10x)/(3y-x)
(12x-y)/(3y-x)
(12x-1.5x)/(3(1.5x)-x) .... plug in y = 1.5x
(12x-1.5x)/(4.5x-x)
(10.5x)/(3.5x)
(10.5)/(3.5)
3
We've shown that plugging z = 2x and y = 1.5x into the expression above simplifies to 3. Therefore, the equation (2x-y+5z)/(3y-x) = 3 is true when x/2 = y/3 = z/4. This concludes the proof.
Answer:
1) {0,1,4}
Step-by-step explanation:
(x,y)
domain is x
range is y
so in this case the domain is 0,1,4
Answer:
show the graph of domain and range