1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dvinal [7]
2 years ago
7

Select the correct answer from the drop-down menu. A whole number is 6 more than 2 times another number. The sum of the two numb

ers is less than 50. This can be written in an inequality as x + 2x + 6 < 50, where x represents the smaller number. From the set {13, 14, 15, 16, 17}, the values of x for which the inequality holds true are .
Mathematics
1 answer:
olya-2409 [2.1K]2 years ago
7 0

Answer:

x = \{13,14\}

Step-by-step explanation:

Given

x + 2x + 6 < 50

Required

True values of x

We have:

x + 2x + 6 < 50\\

3x + 6 < 50

Collect like terms

3x < 50-6

3x < 44

Divide both sides by 3

x < 44/3

x < 14.67

This means that x has a value lesser than 14.67.

Hence, the valid values are:

x = \{13,14\}

You might be interested in
-6+ (-20) + (-40) + 3d
cupoosta [38]

Answer:

-3(22-d) ?

Step-by-step explanation:

I hope this is right please let me know

8 0
3 years ago
Evaluate the limit
wel

We are given with a limit and we need to find it's value so let's start !!!!

{\quad \qquad \blacktriangleright \blacktriangleright \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

But , before starting , let's recall an identity which is the <em>main key</em> to answer this question

  • {\boxed{\bf{a^{2}-b^{2}=(a+b)(a-b)}}}

Consider The limit ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

Now as directly putting the limit will lead to <em>indeterminate form 0/0.</em> So , <em>Rationalizing</em> the <em>numerator</em> i.e multiplying both numerator and denominator by the <em>conjugate of numerator </em>

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}\times \dfrac{\sqrt{x}+\sqrt{3\sqrt{x}-2}}{\sqrt{x}+\sqrt{3\sqrt{x}-2}}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-\sqrt{3\sqrt{x}-2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}{(x^{2}-4^{2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Using the above algebraic identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x})^{2}-(\sqrt{3\sqrt{x}-2})^{2}}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-(3\sqrt{x}-2)}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}+2}{\{(\sqrt{x})^{2}-2^{2}\}(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , here we <em>need</em> to <em>eliminate (√x-2)</em> from the denominator somehow , or the limit will again be <em>indeterminate </em>,so if you think <em>carefully</em> as <em>I thought</em> after <em>seeing the question</em> i.e what if we <em>add 4 and subtract 4</em> in <em>numerator</em> ? So let's try !

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2+4-4}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(x-4)+2+4-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , using the same above identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+6-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+3(2-\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take minus sign common in <em>numerator</em> from 2nd term , so that we can <em>take (√x-2) common</em> from both terms

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)-3(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take<em> (√x-2) common</em> in numerator ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)\{(\sqrt{x}+2)-3\}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Cancelling the <em>radical</em> that makes our <em>limit again and again</em> <em>indeterminate</em> ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\cancel{(\sqrt{x}-2)}\{(\sqrt{x}+2)-3\}}{\cancel{(\sqrt{x}-2)}(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}+2-3)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-1)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , <em>putting the limit ;</em>

{:\implies \quad \sf \dfrac{\sqrt{4}-1}{(\sqrt{4}+2)(4+4)(\sqrt{4}+\sqrt{3\sqrt{4}-2})}}

{:\implies \quad \sf \dfrac{2-1}{(2+2)(4+4)(2+\sqrt{3\times 2-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{6-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{4})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+2)}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(4)}}

{:\implies \quad \sf \dfrac{1}{128}}

{:\implies \quad \bf \therefore \underline{\underline{\displaystyle \bf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}=\dfrac{1}{128}}}}

3 0
2 years ago
Read 2 more answers
I need help on this, can anyone please help me ?
Hoochie [10]

Answer:

I do not know the answer of this question

5 0
3 years ago
Read 2 more answers
Sandy made 8 friendship bracelets she gave 1 bracelet to her best friend and 5 to to her friends in the tennis team
Oduvanchick [21]

Answer:

2

Step-by-step explanation:

1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8

8/8-6/8=2/8

8 0
3 years ago
Help on this 3 questions pleaseeeee!!!!
ra1l [238]

Answer:

14. D

15. A

16. A

Step-by-step explanation:

14. Point slope form formula: y-y₁=m(x-x₁).

When graphing you always want to think x/y for your slope.

X-axis increases by 2 and the Y-axis increases by 10, which would make the slope (m) 2/10 = 1/5.

If your slope is does not come out correct, then you can prove your point.

15. The given information is (-2,2): m=-1.

Given the Point slope formula: y-y₁=m(x-x₁), you can replace m to -1, y₁=2 and x=+2. (Two negatives would make a positive.)

Your answer: y-2=-(x+2)

16. Given: y=4x-7; (3,0)

Parallels lines: Same slope different y-intercepts.

A and D has the same slope and different y-interecepts, but your answer would be A because the equation that was given as a negative y-intercepts.

6 0
3 years ago
Other questions:
  • A store manager begins each shift with the same total amount of money. She keeps $200 in a safe and distributes the rest equally
    5·2 answers
  • What is the greatest number of roots a polynomial of degree 15 can have ?
    12·1 answer
  • Two scuba divers are 30m apart below the surface of the water. They both spot a shark that is below them. The angle of depressio
    11·1 answer
  • What is 7/4 as a mixed number?<br> a. 3/4<br> b. 13/4<br> c. 17/4<br> d. 11/4
    12·2 answers
  • Solve this equation 5x-7=-12
    14·2 answers
  • HELP! WILL GIVE BRANLIEST! + EXTRA POINTS!
    15·1 answer
  • 19
    7·1 answer
  • X +1 &gt; 3 or x + 6 &lt; 4
    8·1 answer
  • How do you separate the number 40 into three parts so that the second number is twice the first number and the third number is t
    7·1 answer
  • Leg a is 15. leg b is 8, what is c?<br><br>​
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!