Answer:
(-1, -1) Let me know if the explanation didn't make sense.
Step-by-step explanation:
If we graph the three points we can see what looks like a quadrilateral's upper right portion, so we need a point in the lower left. This means M is only connected to N here and P is only connected to N. So we want to find the slope of these two lines.
MN is easy since their y values are the same, the slope is 0.
NP we just use the slope formula so (y2-y1)/(x2-x1) = (-1-3)/(5-4) = -4.
So now we want a line from point M with a slope of -4 to intersect with a line from point P with a slope of 0. To find these lines weuse point slope form for those two points. The formula for point slope form is y - y1 = m(x-x1)
y-3 = -4(x+2) -> y = -4x-5
y+1 = 0(x-5) -> y = -1
So now we want these two to intersect. We just set them equal to each other.
-1 = -4x -5 -> -1 = x
So this gives us our x value. Now we can plug that into either function to find the y value. This is super easy of we use y = -1 because all y values in this are -1, so the point Q is (-1, -1)
Answer:
3).
4).
If it was by 10, k = 3 by 10
k = 30
5).
Split up the interval [0, 2] into <em>n</em> equally spaced subintervals:
Let's use the right endpoints as our sampling points; they are given by the arithmetic sequence,
where . Each interval has length .
At these sampling points, the function takes on values of
We approximate the integral with the Riemann sum:
Recall that
so that the sum reduces to
Take the limit as <em>n</em> approaches infinity, and the Riemann sum converges to the value of the integral:
Just to check:
Answer:
Step-by-step explanation:
The heights of neither the rectangular prism nor the triangular prism are given, so we don't know the volume of either.
If h is the height of the rectangular prism, then its volume is
6×8×h = 48
if the height of the triangular prism is h/2, then its volume is
(1/2)×24×8×(h/2) = 48
So we know the volumes are the same -- but we don't know what that volume is.