1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRissso [65]
3 years ago
12

Use the limit comparison test to determine whether ∑n=19∞an=∑n=19∞8n3−2n2+196+3n4 converges or diverges.

Mathematics
1 answer:
sattari [20]3 years ago
4 0

Answer:

Diverges

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Dividing]:                                                                         \displaystyle \frac{b^m}{b^n} = b^{m - n}

<u>Calculus</u>

Limits

  • Limit Rule [Variable Direct Substitution]:                                                     \displaystyle \lim_{x \to c} x = c

Series Convergence Tests

  • P-Series:                                                                                                         \displaystyle \sum^{\infty}_{n = 1} \frac{1}{n^p}
  • Direct Comparison Test (DCT)
  • Limit Comparison Test (LCT):                                                                       \displaystyle  \lim_{n \to \infty} \frac{a_n}{b_n}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \sum^{\infty}_{n = 19} \frac{8n^3 - 2n^2 + 19}{6 + 3n^4}

<u>Step 2: Apply DCT</u>

  1. Define Comparison:                                                                                     \displaystyle \displaystyle \sum^{\infty}_{n = 19} \frac{n^3}{n^4}
  2. [Comparison Sum] Simplify:                                                                         \displaystyle \displaystyle \sum^{\infty}_{n = 19} \frac{1}{n}
  3. [Comparison Sum] Determine convergence:                                             \displaystyle \displaystyle \sum^{\infty}_{n = 19} \frac{1}{n} = \infty , \ \text{div by P-Series}
  4. Set up inequality comparison:                                                                     \displaystyle\frac{8n^3 - 2n^2 + 19}{6 + 3n^4} \geq \frac{1}{n}
  5. [Inequality Comparison] Rewrite:                                                                 \displaystyle n(8n^3 - 2n^2 + 19) \geq 6 + 3n^4
  6. [Inequality Comparison] Simplify:                                                                 \displaystyle 8n^4 - 2n^3 + 19n \geq 6 + 3n^4 \ \checkmark \text{true}

∴ the sum  \displaystyle \sum^{\infty}_{n = 19} \frac{8n^3 - 2n^2 + 19}{6 + 3n^4}  is divergent by DCT.

<u>Step 3: Apply LCT</u>

  1. Define:                                                                                                           \displaystyle a_n = \frac{8n^3 - 2n^2 + 19}{6 + 3n^4}, \ b_n = \frac{1}{n}
  2. Substitute in variables [LCT]:                                                                       \displaystyle  \lim_{n \to \infty} \frac{8n^3 - 2n^2 + 19}{6 + 3n^4} \cdot n
  3. Simplify:                                                                                                         \displaystyle  \lim_{n \to \infty} \frac{8n^4 - 2n^3 + 19n}{6 + 3n^4}
  4. [Limit] Evaluate [Coefficient Power Rule]:                                                   \displaystyle  \lim_{n \to \infty} \frac{8n^4 - 2n^3 + 19n}{6 + 3n^4} = \frac{8}{3}

∴ Because  \displaystyle  \lim_{n \to \infty} \frac{a_n}{b_n} \neq 0  and the sum  \displaystyle \sum^{\infty}_{n = 19} a_n  diverges by DCT,  \displaystyle \sum^{\infty}_{n = 19} \frac{8n^3 - 2n^2 + 19}{6 + 3n^4}   also diverges by LCT.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Convergence Tests (BC Only)

Book: College Calculus 10e

You might be interested in
What is the approximate volume of a cone with a height of 12 in. and radius of 9 in.?
Arisa [49]
Volume of the cone = 1/3π r^2 h
So, we are given that r = 9 and h = 12
plugging in all the known values 
1/3 * (3.14) * 9 * 9 * 12
= 1017.36 cm³
or
≈1017.4 cm³
8 0
3 years ago
What shape is this ​
suter [353]

Step-by-step explanation:

blank I don't see a shape

4 0
3 years ago
Which sequence of transformations will result in similar, but not congruent, figures?
Rudik [331]

D.dilation changes the size is your answer. Hope this helps!

8 0
3 years ago
Read 2 more answers
A triangle undergoes a sequence of transformations. First, the triangle is dilated by a scale factor of 1/2 about the origin. Th
andrezito [222]
The triangle will still be similar to the original triangle.
Those transformations altered the position and scale of the triangle, but the angle measures are still the same.
7 0
3 years ago
Read 2 more answers
Match the vocab terms with the correct definition.
Anna007 [38]
7. compound events that that are not affected by other's outcomes
8 0
3 years ago
Read 2 more answers
Other questions:
  • BEST ANSWER GETS TO BE BRAINLYEST!!!!!
    13·1 answer
  • Write the expression. A number b squared
    13·1 answer
  • What's the reciprocal of 3 over 5?
    9·1 answer
  • 3/4 divided by 1/4 equal
    10·2 answers
  • How does it factor out as that
    11·1 answer
  • For geometry:(<br><br> will give brainist to the correct answer!!!
    7·1 answer
  • What is the scale factor from AABC to ADEF?
    13·1 answer
  • X= steps y= number of blocks <br> Someone please help
    5·1 answer
  • Playland Park charges $25 admission plus $2 per ride. Funland Park charges $35 admission plus $1 per ride. For what number of ri
    7·1 answer
  • Can someone give me an example on how to solve non right angled triangles?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!